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Abstract—We present a federated learning framework that
allows one to handle heterogeneous client devices that may
not conform to the population data distribution. The proposed
approach hinges upon a parameterized superquantile-based ob-
jective, where the parameter ranges over levels of conformity.
We introduce a stochastic optimization algorithm compatible
with secure aggregation, which interleaves device filtering steps
with federated averaging steps. We conclude with numerical
experiments with neural networks on computer vision and
natural language processing data.

I. INTRODUCTION

In federated learning [1, 2], a number of client devices
with privacy-sensitive data collaboratively learn a machine
learning model under the orchestration of a central server, while
keeping their data decentralized. This is achieved by pushing
the computation to the devices while the server coordinates
with the devices for aggregation of model updates. Federated
learning has found myriad applications such as smartphone
apps [3, 4] and healthcare [5].

A key feature of federated learning is statistical heterogeneity,
i.e., client data distributions are not identical. Each user has
unique characteristics which are reflected in the data they
generate. These characteristics are influenced by personal,
cultural, and geographical factors. For instance, the varied
use of language contributes to data heterogeneity in a next
word prediction task.

Vanilla federated learning [1], aims to minimize the pre-
diction loss of a given model on average over a population
of devices available for training. While this approach works
for users with local data distribution close to the average
distribution, it is liable to fail on individuals who do not
conform to the population, leading to poor user experience.
The goal of this work is to present a framework to improve the
experience of these diversely non-conforming users without
sacrificing the good experience of conforming users.

In this paper, we introduce the ∆-FL framework, summarized
in Fig. 1, to handle heterogeneity of client data distributions.
The framework relies on a superquantile-based objective param-
eterized by the conformity level, which is a scalar summary of
how closely a device conforms to the population. To optimize
the ∆-FL objective, we present an algorithm which interleaves
device filtering with federated optimization steps. We discuss
its special features compared to the standard FedAvg and to

recent algorithms [6]–[8] about heterogeneity in federated
learning. We analyze our algorithm in the convex setting and
establish bounds on total communication cost.

We demonstrate the breadth of our framework with numerical
experiments using convolutional and recurrent neural networks
on tasks including image classification, and sentiment analysis
based on public datasets. The simulations demonstrate superior
performance of ∆-FL over state-of-the-art baselines on the
upper quantiles of the error on test devices, while being
competitive on the mean error.

Outline. Section II describes the setting and precisely defines
conformity. Section III discusses the ∆-FL framework, the
training objective, and the related approaches. Section IV gives
an optimization algorithm for the ∆-FL objective and analyzes
its convergence. Section V presents numerical experiments of
the proposed method. Full proofs and additional details can be
found in [9]. The code and the scripts to reproduce numerical
results are publicly available at https://github.com/krishnap25/
simplicial-fl.

II. PROBLEM SETTING

We introduce the notion of conformity in federated learning
to measure how conforming are test devices from the population
of train devices.

Train Devices and Trend Distribution. Consider N clients
devices with respective probability distribution qk and weights
αk > 0. We assume

∑N
k=1 αk = 1 and that the data on device

k are distributed i.i.d. according to qk. The loss of a device
with distribution q is F (w; q) := Eξ∼q[f(w; ξ)], where f(w; ξ)
is the loss on the input-output pair ξ under model w ∈ Rd.
The loss on kth training device is then Fk(w) := F (w; qk).

The standard federated learning objective is the weighted
average of the local losses of the training devices:

min
w∈Rd

N∑
k=1

αkFk(w) +
λ

2
‖w‖22 , (1)

with a regularization parameter λ. We define the trend distri-
bution as pα =

∑n
i=1 αkqk, the intrinsic distribution on which

standard federated learning models are trained. Indeed, (1)
exactly minimizes F (w; pα) + (λ/2)‖w‖22. Our approach will
consider test distribution that depart from the trend distribution.
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Fig. 1. Schematic summary of the ∆-FL framework. Left: The server maintains multiple models wθj , one for each level of conformity θj .
Middle: During training, selected devices participate in training each model wθj . Individual updates are securely aggregated to update the
server model. Right: Each test user is allowed to select their level of conformity θ, and are served the corresponding model wθ .

Test Devices and Conformity. We consider “test” devices,
unseen during training, whose distribution can be written as
a mixture of the training distributions. A mixture pπ with
weight π ∈ ∆N−1 is pπ :=

∑N
k=1 πkqk. Here, ∆N−1 is the

probability simplex in RN . We now define the conformity of
mixture with respect to the trend distribution.

Definition 1. The conformity conf(pπ) ∈ (0, 1] of a mixture pπ
with weight π is defined as mink∈[N ] αk/πk. The conformity
of a test device refers to the conformity of its data distribution.

Given a large representative set of training devices, it
is reasonable to assume that each test device can be well-
approximated by a mixture pπ. Then, the conformity of a
device is a scalar summary of how close it is to the population.
A test device with conformity θ ≈ 1 has its local distribution
close to the trend distribution. Then, a model trained with the
distribution pα is expected to have a high predictive power for
this test device. In contrast, a test device with θ ≈ 0 would
be vastly different from the distribution pα, and the predictive
power of a model trained on pα could be poor.

There is a trade-off between fitting to the population and
supporting non-conforming test devices. The conformity θ
presents a natural way to encapsulate this tradeoff in a scalar
parameter. That is, given a conformity θ ∈ (0, 1), we choose
to only support test distributions pπ with conf(pπ) ≥ θ.

III. THE ∆-FL FRAMEWORK

The ∆-FL framework supplies each test device with a
model appropriate to its conformity. Given a discretization
{θ1, . . . , θr} of (0, 1], ∆-FL maintains r models, one for each
conformity level θj , as laid down in Fig. 1. The local data is
not allowed to leave a device due to privacy restrictions; hence,
the conformity of a test device cannot be measured. Instead,
we allow each test device to tune their conformity.

Superquantiles come into play. To train a model with a
given conformity, we aim to do well on all mixtures pπ with
conf(pπ) ≥ θ. This leads us to the minimax objective

min
w∈Rd

[
Fθ(w) := max

π∈Pθ
F (w; pπ) +

λ

2
‖w‖22

]
where Pθ :=

{
π ∈ ∆N−1 : conf(pπ) ≥ θ

}
.

Using duality [10] we can show that Fθ can be written as a
minimum: Fθ(w) = minη∈RGθ(w, η), where

Gθ(w, η) := η+
1

θ

N∑
k=1

αk max
{
Fk(w)−η, 0

}
+
λ

2
‖w‖22 . (2)

This reveals that Fθ is a (1 − θ)-superquantile; see e.g. the
overview [11] and the drawing of Fig. 2.

∆-FL Objective. We now introduce the ∆-FL objective as the
dual to the minimax objective, i.e.,

min
w∈Rd,η∈R

Gθ(w, η) .

In Algorithm 1, we propose to solve this problem by alternating
updates of w and η. From standard results on superquan-
tiles [11], the optimal solution of partial minimization in η
admits a closed form as the (1−θ)-quantile of the distribution
of losses (Fk(w))1≤k≤N with weights (αk)1≤k≤N . In contrast,
the w-step is executed by a standard federated optimization
algorithm such as FedAvg until a stopping criterion is met.
Precisely, given a target suboptimality εt > 0, we require that

E [G(wt+1, ηt) |wt]−min
w
G(w, ηt) ≤ εt. (3)

Note that existing works about the use of superquantiles
always consider centralized settings and often use convex
optimization approaches, such as interior point algorithms [11].
The alternating minimization is suitable for our setting, by
using a federated optimization algorithm for the w-step.

Putting the method into perspective. Let us discuss further
some aspects of the ∆-FL framework and Algorithm 1.
(a) Device Filtering. Algorithm 1 can be viewed as interleaving

device filtering (where devices with Fk(w) < η are filtered
out) with federated optimization steps. If a device is filtered
out, it means that the model fits well the data on that device.

(b) Computation Cost. The computation cost for each commu-
nication round of the w-step of Algorithm 1 is the same as
that of the base federated optimization algorithm used. The
η-step requires a pass over the local data on each device.

(c) Communication Cost. The total communication cost is
dominated by the communication of model parameters.
The theoretical bound on communication rounds presented
in Section IV exhibits the same dependence on target



Sθ(Z) =

E[Z |Z > Qθ(Z)]
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Fig. 2. For a continuous random variable Z, drawing of (1−θ)-quantile
Qθ(Z) and (1−θ)-superquantile Sθ(Z), defined as an expectation.
In this work, we heavily rely on the variational expression of the
superquantile as the minimum of Gθ over η in (2); see [11].

accuracy ε as the base federated optimization algorithm,
e.g., FedAvg. We also corroborate this observation with
numerical experiments in Section V.

(d) Tuning Conformity. If using a single global value of
conformity for all test users, one should account for
all implications of this choice. This depends on the
distributions of users. Committing blindly to a single
conformity level could fail to balance supporting non-
conforming users with fitting the population. On the other
hand, measuring the conformity of users requires transfer
of user data, a violation of privacy. As such, decisions
impacting fairness and privacy are questions of policy rather
than of mathematics. Both ∆-FL and [8] circumvent this
issue by training a family of models for different conformity
levels, and allows a test user to tune their conformity.

Related Work on Heterogeneity. Past works have aimed to
tackle heterogeneity in federated learning by modifying the
objective. AFL [6] uses a minimax objective that is effective
only with coarse groups of devices; this requires domain
knowledge. We note that ∆-FL interpolates between AFL
(θ → 0) and standard federated learning (θ → 1).

Like ∆-FL, the method q-FFL [8] also interpolates between
these two extremes but in an different way: it raises losses to
the power 1+q, thus penalizing large losses more, while ∆-FL
minimizes the average of the largest losses (see Fig. 2). q-FFL
also maintains multiple global models for different parameters
q. However, q does not admit a natural interpretation and its
range could be unbounded. In contrast, ∆-FL’s conformity
parameter θ ∈ (0, 1) is the conformity level, which has a clear
meaning. We provide an experimental comparison of these
methods with respect to the client heterogeneity in Section V.

Other works minimize the standard federated learning
objective, but aim to improve convergence in the presence of
heterogeneity by correcting for potential client drift. Examples
include FedProx [7] and Scaffold [12]. Such algorithms could
thus be combined with our framework to reduce the cost of
each w-step but that goes beyond the scope of this paper.

IV. CONVERGENCE ANALYSIS

We now analyze Algorithm 1 in the convex setting. We
assume at each Fk is convex (which is the case for instance
for linear models and convex losses). This yields that Gθ is

Algorithm 1 Alternating Minimization for ∆-FL
Input: Function G : Rd × R → R, w0 ∈ Rd, inexactness sequence (εt),

time horizon t∗
1: for t = 0, 1, . . . , t∗ − 1 do
2: ηt ∈ arg minη∈RG(wt, η)
3: wt+1 ≈ arg minw∈Rd G(w, ηt) such that (3) holds with εt
4: return wt∗

convex, but it is still not smooth, due to the max{·, 0} term. So,
we propose to use a smooth surrogate Gθ,ν and the analogous
Fθ,ν defined for ν > 0 as

Gθ,ν(w, η) := η +
1

θ

N∑
k=1

αkhν
(
Fk(w)− η

)
+
λ

2
‖w‖2,

Fθ,ν(w) := min
η∈R

Gθ,ν(w, η),

where hν(ρ) = minu
{

max{u, 0}+ (u− ρ)2/(2ν)
}

is the so-
called Moreau envelope of max{· , 0}, It provides a smooth and
tractable uniform approximation [13]. Our working function is
convex and smooth, as formalized in the next lemma.

Lemma 2. If Fk is convex, B-Lipshitz and L-smooth, then
Gθ,ν is jointly convex in (w, η) over Rd × R and we have
that w 7→ ∇wGθ,ν(w, η) is Lw-Lipschitz for all η ∈ R where
Lw := λ + (L + B2/ν)/θ, and, η 7→ ∂

∂ηGθ,ν(w, η) is Lη-
Lipschitz for all w ∈ Rd where Lη := (νθ)−1.

In the next proposition, we use this lemma to establish an
upper bound of the outer-loop complexity of Algorithm 1.

Proposition 3. Under the assumptions of Lemma 2, denote the
condition number of Gθ,ν(·, η) by κ = 1 + (L+B2/ν)/(θλ).
Consider Algorithm 1 with inputs Gθ,ν and stopping crite-
rion (3) with εt = ε0 e−t/κ for some ε0 > 0. Then,

E [Fθ,ν(wt)]− F ?θ,ν ≤ t e−t/κ
(
Fθ,ν(w0)− F ?θ,ν + 2ε0

)
,

where appears the minimum value F ?θ,ν = minFθ,ν .

Proof. For each iteration t, denote ψt(w) := Gθ,ν(w, ηt), and
let w̃t = wt − ∇ψt(wt)/Lw. Lemma 2 ensures that ψt is
Lw-smooth and λ-strongly convex which in turn yields [14]:

ψt(wt)− ψt(w̃t) ≥
1

2Lw
‖∇ψt(wt)‖2 (smoothness)

ψt(wt)−minψt ≤
1

2λ
‖∇ψt(wt)‖2 (strong convexity).

Let Ft denote the σ-algebra generated by wt. Putting these
together with the stopping criterion (3), we get

E[ψt(wt+1)|Ft] ≤ minψt + εt ≤ ψt(w̃t) + εt

≤ ψt(wt)− κ−1
(
ψt(wt)−minψt

)
+ εt .

Using now the three following facts Fθ,ν(wt+1) ≤ ψt(wt+1) ,
Fθ,ν(wt) = ψt(wt) , and minw Fθ,ν(w) ≤ minψt , we get,

E [Fθ,ν(wt+1)|Ft]
≤ Fθ,ν(wt)− κ−1

(
Fθ,ν(wt)−minFθ,ν

)
+ εt .



Rearranging this and taking an expectation over Ft yields

E [Fθ,ν(wt+1)]−minFθ,ν

≤ (1− κ−1)
(
E [Fθ,ν(wt)]−minFθ,ν

)
+ εt

≤ exp(−κ−1)
(
E [Fθ,ν(wt)]−minFθ,ν

)
+ εt .

Using the shorthand ∆t := E [Fθ,ν(wt)] − minFθ,ν and
unrolling the above inequality gives

∆t+1 ≤ exp

(
− t+ 1

κ

)
∆0 +

t∑
τ=0

exp

(
− t− τ

κ

)
ετ

≤ t exp

(
− t
κ

)
(∆0 + 2ε0) ,

which completes the proof.

Next, we bound the total communication rounds (where a
round refers to a secure aggregation of model updates) required
by Algorithm 1, taking into account the cost of solving each
w-step. We state the result with the w-step solved by FedAvg
with full device participation (a.k.a. local SGD). The proof
uses a result on communication rounds of FedAvg from [15].

Proposition 4. Consider the setting of Proposition 3 with
αk ≡ 1/N . Consider using local SGD with τ local steps per
communication round to solve w-step of Algorithm 1. Suppose
that stochastic gradients (w.r.t. w) of hν(Fk(w)− η) have a
bounded variance σ2

k, with σ2 =
∑
k αkσ

2
k. Let D bound the

diversity of Fk; see [15, Assumption 3.b] for the definition.
Then the total rounds T of communication to obtain a point
ŵ such that E[Fθ,ν(ŵ)]− F ?θ,ν ≤ ε is at most

O

(
σ2κ2∆0

Nλτε
+

√
σ2κ3∆0

λ2τε
+

√
D2κ4∆0

λε
+ κ2

)
,

where ∆0 = (Fθ,ν(w0)−F ?θ,ν)/ε0 + 1, and big O(·) includes
constants and polylog factors.

Proof. For simplicity, C denotes some universal constant which
may change from one line to the next. Let ∆′0 := ∆0 + 2ε0 =
Fθ,ν(w0)− F ?θ,ν + 2ε0. We use the fact that for ε ≤ 2∆′0/3,

t ≥ κ log

(
2κ∆′0
ε

)
+ κ log log

(
2κ∆′0
ε

)

implies ε ≥ t exp (−t/κ) ∆′0. Thus, using Proposition 3, the
number of outer iterations t∗ to get E [Fθ,ν(wt∗)]− F ?θ,ν ≤ ε
is

t∗ = κ log

(
2κ∆′0
ε

)
+ κ log log

(
2κ∆′0
ε

)
.

From [15, Theorem 2], the number nt of communication rounds
to obtain wt+1 satisfying the stopping criterion (3) is

nt ≤ C

‖α‖∞σ2

λτεt
+

√
σ2

λ2τεt
+

√
κD2

λεt
+ κ log

(
κτ∆t

εt

)

with ∆t = Fθ,ν(wt)− F ?θ,ν ≥ Gθ,ν(wt, ηt)−minGθ,ν(·, ηt).
The total number of communication rounds is then

T =

t∗−1∑
t=0

nt ≤ C

(
σ2

Nλτε0

t∗−1∑
t=0

exp(t/κ)

+

√ σ2

λ2τε0
+

√
κD2

λε0

 t∗−1∑
t=0

exp
(
t/(2κ)

)
+ κt∗ log

(
κτ∆max

ε0

)
+

t∗−1∑
t=0

t

)
.

For the first term, we use exp(κ−1) ≥ 1 + κ−1 to get,

t∗−1∑
t=0

exp(t/κ) ≤ 2κ2∆′0
ε

log

(
2κ∆′0
ε

)
.

We similarly treat the second term to get

t?−1∑
t=0

exp(t/(2κ)) ≤ C

√
κ3

ε
∆′0 log

(
2κ∆′0
ε

)
.

The last two terms can be bounded by simply plugging in t∗.
Putting these terms together completes the proof.

Setting ν = θε/2 we get that T is bounded by

O

(
1

Nτθ2(λε)3
+

1

ε2
√
θ3λ5τ

+
1

θ2(λε)5/2

)
.

V. NUMERICAL EXPERIMENTS

We now experimentally check the performance of ∆-FL.
The experiments were implemented in Python using automatic
differentiation provided by PyTorch, while the data was
preprocessed using LEAF [16].

A. Numerical Setting

We optimize ∆-FL with a variant of Algorithm 1 with an
iteration budget. In particular, we reduce each w-step to FedAvg
with a single communication round with a fixed budget of local
gradient descent on selected devices The resulting algorithm
is given in Algorithm 2.

Datasets, Tasks and Models. We consider two learning tasks.
(a) Character Recognition: We use the EMNIST dataset [17],

where the input x is a 28 × 28 grayscale image of a
handwritten character and the output y is its label (0-
9, a-z, A-Z). Each device is a writer of the character x.
The weight αk assigned to author k is the number of
characters written by this author. We use a convolutional
neural network architecture (ConvNet).

(b) Sentiment Analysis: We use the Sent140 dataset [18] where
the input x is a tweet and the output y = ±1 is its sentiment.
Each device is a distinct Twitter user. The weight αk
assigned to user k is the number of tweets publised by this
user. The neural network model is a LSTM [19] built on
the GloVe embeddings. We refer to the latter as “RNN”.

We trained on half the devices and tested on the rest, where
each training device k is weighted by its number of datapoints.



Algorithm 2 ∆-FL with a fixed budget
Input: N devices {(qk, αk)}k∈[N ], number of local updates

nlocal, learning rate sequence (γt), devices per round m,
initial iterate w0, conformity level θ ∈ (0, 1)
Server executes:

1: for t = 1, 2, · · · do
2: Sample devices St ∼ Unif([N ])m

3: Broadcast wt to each device k ∈ St
4: Each k ∈ St computes Fk(wt) and sends to server
5: ηt ← Quantile

(
1− θ,

(
Fk(wt), αk)

)
k∈St

)
6: Filter out S′t = {k ∈ St : Fk(wt) ≥ ηt}
7: for each device k ∈ S′t in parallel do
8: wk,t ← LocalUpdate(k,wt)
9: wt+1 ← SecureAggregate

(
{(wk,t, αk)}k∈S′t

)
10: function LocalUpdate(k,w) . Run on device k
11: for i = 1, . . . , nlocal do
12: Update w ← w − γt∇f(w; ξi) using ξi ∼ qk

return w

We use the logistic loss for training and misclassification error
for evaluation. Each experiment is repeated 5 times with a
different sampling of train and test devices.

Methods. We compare ∆-FL with the standard objective (1)
optimized using FedAvg, FedProx [7] (which shows more stable
convergence than FedAvg), and FedAvg-Sub, which is FedAvg
with as many devices per round as ∆-FL for the best conformity
level. We also compare ∆-FL with other heterogeneity-sensitive
objectives, namely q-FFL [8], AFL [6].

Metrics. We track the loss Fk of each training device and the
misclassification error on each test device. We summarize these
distributions with their mean and the 90th percentile, where the
latter measures performance on devices with low conformity.

Hyperparameters. We run FedAvg until convergence and fix
the corresponding number of iterations as the budget for all
other algorithms. We tuned a learning rate schedule using grid
search to find the best terminal loss averaged over training
devices for FedAvg. The same iteration budget and learning rate
schedule were used for all other methods including ∆-FL. Each
method, except FedAvg-Sub, selected 100 devices per round for
training. For all methods, local SGD is run on selected devices
for 1 epoch. We run q-FFL for q ∈ {10−3, 10−2, . . . , 10} and
report q with the smallest 90th percentile of misclassification
error on test devices. We use q-FFL with q = 10 as a proxy
for AFL, as it was found to converge faster with similar
performance across devices [8].

B. Experimental Results

Performances across Iterations. Fig. 3 compares the conver-
gence of Algorithm 1 with FedAvg, measured in terms of the
number of communication rounds. We see that ∆-FL converges
on par with FedAvg, while using the same hyperparameters
such as learning rate in the w-step of Algorithm 1. We noticed
also that tuning the communication budget for the w-step of
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Fig. 3. Performance across iterations of loss on training devices and
misclassification error of test devices for EMNIST.

Algorithm 1 (set to 1 for the rest of the experiments as in
Algorithm 2) allows minor improvements in the terminal error.
Still, the rate of convergence is the same.
Performances and comparisons. Table I records the mean
and 90th percentile of the misclassification error on the test
devices. We find that ∆-FL improves the 90th percentile test
error in three out of four dataset-model pairs, and is within
one standard deviation of the best error in the other last one.
A 3.3% absolute (12% relative) improvement on EMNIST is
most striking. Indeed, ∆-FL accounts for test users who do not
conform to the population. ∆-FL is competitive with the other
methods on the mean error, and, perhaps surprisingly, attains
the smallest mean error in two cases. In Sent140-RNN, ∆-FL
with θ = 0.1 displays unstable behavior. This could be due to
the objective being unsuitable (AFL does poorly too) coupled
with η-step filtering out too many devices. Nevertheless, ∆-FL
is competitive for multiple values of θ.

Performance Across Devices. Fig. 4 and 5 visualize distribu-
tion of error on test devices, respectively as a histogram and
a scatter plot against the number of datapoints. We find that
∆-FL exhibits thinner upper and lower tails of the error in
general and a lower variance of the distribution.

Regarding Fig. 5, we observe that improvement over the
worst cases is achieved regardless of the local data size of the
devices. Indeed, the device filtering step operates a sorting of
the loss of the devices which does not prevent small devices
from being selected. In contrast, FedAvg, by averaging with
respect to the weights of the devices, is likely to give more
importance to the updates of devices with larger local data
size. Secondly, ∆-FL appears to reduce the variance of the
loss on the train devices. Lastly, note that amongst test devices
with a small number of data points (e.g., < 200 for EMNIST
or < 100 for Sent140), ∆-FL reduces the variance of the
misclassification error.

VI. CONCLUSION AND PERSPECTIVES

We presented ∆-FL, a federated learning framework that can
handle heterogeneous client devices that do not conform to the



TABLE I
MEAN AND 90TH PERCENTILE OF THE DISTRIBUTION OF MISCLASSIFICATION ERROR (IN %) ON THE TEST DEVICES.

EMNIST Sent140
Mean 90th Percentile Mean 90th Percentile

FedAvg 16.64± 0.50 28.46± 1.07 30.16± 0.44 49.67± 3.95
FedAvg-Sub 16.23± 0.23 27.57± 0.81 29.86± 0.46 46.94± 3.84
FedProx 16.02± 0.54 27.01± 1.86 30.20± 0.48 49.86± 4.07

q-FFL (best q) 16.59± 0.30 28.02± 0.80 29.96± 0.56 48.66± 4.68
AFL 33.01± 0.37 45.08± 1.00 37.74± 0.65 57.78± 1.19

∆-FL, θ = 0.8 16.09± 0.40 26.23± 1.15 30.31± 0.33 46.46± 4.39
∆-FL, θ = 0.5 15.49± 0.30 23.69± 0.94 33.59± 2.44 50.48± 8.24
∆-FL, θ = 0.1 16.37± 1.03 25.46± 2.77 51.98± 11.81 86.45± 10.95
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Fig. 4. Histogram of misclassification error on test devices.
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Fig. 5. Scatter plots of misclassification error on test devices against
its data size for EMNIST.

population. We provided an optimization algorithm, proved its
rate of convergence and demonstrated numerically that ∆-FL
boosts performance on non-conforming devices.

An interesting venue for future work is the exploration
of settings where new training users arrive in an online
fashion and the trend distribution is revealed incrementally
over time. It is also interesting to consider other divergence
to measure the conformity between a test distribution pπ
and the trend distribution pα, for instance, the χ2-divergence
1/(2N)

∑N
k=1(πk/αk − 1)2 or the `1 norm ‖π − α‖1.
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