
Differentially Private Federated Quantiles with
the Distributed Discrete Gaussian Mechanism

Krishna Pillutla∗†1 Yassine Laguel∗2 Jérôme Malick3 Zaid Harchaoui1
1 University of Washington, Seattle, WA, USA 2 Rutgers University, New Brunswick, NJ, USA

3 CNRS, Grenoble, France

Abstract

The computation of analytics in a federated environment plays an increasingly
important role in data science and machine learning. We consider the differen-
tially private computation of the quantiles of a distribution of values stored on
a population of clients. We present two quantile estimation algorithms based
on the distributed discrete Gaussian mechanism that are compatible with secure
aggregation. Based on a privacy-utility analysis and numerical experiments, we
delineate the regime under which each one is superior. We find that the algorithm
with suboptimal asymptotic performance works the best on moderate problem sizes
typical in federated learning with client sampling. We apply these algorithms to
augment distributionally robust federated learning with differential privacy.

1 Introduction

Federated analytics consists of a number of client devices, such as smartphones, collaboratively
computing population statistics under the orchestration of a central server [19, 17]. A key component
of this paradigm is the preservation of clients’ privacy: any deployed algorithms must ensure that no
client data is leaked through the released statistics via rigorous differential privacy guarantees [7, 8].

In the federated setting, the recent paradigm of distributed differential privacy has been growing in
popularity [16]. It allows one to simulate the effect of a trusted central aggregator without actually
trusting the orchestrating server, via the use of cryptographic secure aggregation protocols [2].
Practical implementations of such algorithms are based on cryptographic techniques such as secure
multiparty computation [10], which add two key limitations. First, they require interactions with
the server to be limited to sums of per-client vectors. Second, they require each component of the
per-client vectors to be discretized to the ring ZM of integers modulo M .

In this work, we are interested in the problem of federated quantile computation of a per-client
scalar. Besides being fundamental to robust statistics, quantiles are central to adaptive clipping in
federated averaging [1] and to distributionally robust versions of federated learning [18]. Prevailing
approaches to differentially private quantile computation [24, 26, 13] typically require operations such
as sorting or dynamic programming. It is unclear how to extend these approaches to satisfy distributed
differential privacy, particularly, limiting communication with the server to sums of per-client vectors.

We study a simple alternative based on classical techniques from cumulative distribution estimation
that are compatible with distributed differential privacy. We quantize the per-client scalars into a
per-client histogram, which we then aggregate with a simplified variant of the distributed discrete
Gaussian mechanism [16]. We show that the quantile error to obtain an (ε, δ)-differentially private
quantile estimate of n scalars with a histogram of b bins scales as

√
b/(εn) ignoring log factors.

∗These authors contributed equally to this work. †Now at Google Research.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

Figure 1: Illustration of our differentially private algorithm for the computation of a quantile using
(flat) histograms.

Flat histograms are known to be suboptimal for cumulative distribution estimation; an approach known
as the hierarchical histogram method or tree aggregation attains a better asymptotic dependence on
the number of bins [15, 9, 5, 25, 6]. We show that the hierarchical histogram method with distributed
differential privacy can attain a quantile error of log2 b/(εn).

While the hierarchical method attains a better asymptotic dependence on the number b of bins, the
flat method achieves a smaller error for moderate b, as might be typical in a federated learning setting
due to client sampling [17]. We corroborate this observation with synthetic numerical experiments in
quantile estimation and distributionally robust federated learning.

2 Setting and Algorithms

Suppose we have n clients, with each client i hosting a bounded scalar ℓi ∈ [0, B], i ∈ {1, · · · , n}
for a fixed B > 0. We wish to estimate the p-quantile of the empirical distribution of ℓi’s, defined as

qp := min

{
t :

∑n
i=1 I(ℓi ≤ t)

n
≤ p

}
.

Distributed differential privacy simulates a trusted central aggregator by using a secure summation
oracle [2], which enables the computation of summations

∑n
i=1 vi where vi ∈ Rd is a privacy-

sensitive vector residing with client i without revealing any further information to a privacy adversary.
Practical implementations of such algorithms are based on cryptographic techniques such as secure
multiparty computation [10], which requires each component of the vectors vi to be discretized to the
ring ZM of integers modulo M .

Quantiles from Flat Histograms. We start with by estimating the quantile from a flat histogram, as
illustrated in Figure 1. Each client i first computes a local histogram xi ∈ {0, 1}b on [0, B] with b
bins and given edges 0 ≤ l0 < l1 < · · · < lb = B. Each client then adds random discrete Gaussian
with noise ξi ∼ NZ(0, σ

2Ib) and scale parameter σ2, that is a random variable ξ over Z satisfying

P(ξ = i) = C exp

(
− (i− µ)2

2σ2

)
for all i ∈ Z ,

where C is an appropriate normalizing constant. We finally sum them up using a secure summation
oracle. At the end of all these steps, the server has a histogram ĥ ∈ Rb which approximates the
true histogram h =

∑n
i=1 xi of per-client scalars. The cumulative distribution F̂j = (ĥ1 + · · · +

ĥj)/(ĥ1+· · ·+ĥb) induced by the approximate histogram ĥ estimates the true cumulative distribution
Fj = (1/n)

∑n
i=1 I(ℓi ≤ lj). Since it may fail to be monotonic, we estimate the quantile using a bin

edge lj such that the estimated cumulative mass F̂j is as close to p as possible:

Qp(F̂) := lj∗p(F̂) where j∗p(F̂) = argmin
j∈[b]

∣∣F̂j − p
∣∣ . (1)

The full algorithm is given in Algorithm 1. We also consider a variant of the algorithm where the
cumulative distribution F̂j is estimated using the exact counts, i.e., the denominator ĥ1 + · · ·+ ĥb is
replaced by the true sum h1 + · · ·+ hb = n (option 2 in Algorithm 1).

2

Algorithm 1 Quantile Computation with Distributed Differential Privacy: Flat Histograms

Input: Ring size M , n clients each with ℓi ∈ [0, B], target quantile p ∈ (0, 1), discretization
l0, l1, · · · , lb of [0, B], variance proxy σ2, scaling factor c ∈ Z+

1: Each client i computes local histogram xi =
(
I(lj−1 ≤ ℓi < lj)

)b
j=1

2: Each client i samples ξi ∼ NZ(0, σ
2Ib) and sets x̃i = (cxi + ξi) mod M

3: Compute s = (
∑n

i=1 x̃i) mod M securely and set histogram ĥ = s/c

4: Estimate the cumulative function with F̂ ∈ Rb as
• Option 1 (estimated count): F̂j = (ĥ1 + · · ·+ ĥj)/n̂ where n̂ = ĥ1 + · · ·+ ĥb

• Option 2 (exact count): F̂j = (ĥ1 + · · ·+ ĥj)/n

5: return Quantile estimate lj∗p(ĥ) corresponding to index j∗p(ĥ); cf. Eq. (1)

Quantiles from Hierarchical Histograms. A hierarchical histogram H maintains the number of
clients not only in every single bin but also in groups of bins organized as a binary tree. Concretely,
H(r, j) maintains the number of clients whose losses lie between the bin edges l2r(j−1)+1 and l2rj
for index j = 1, · · · , b/2r and level r = 0, · · · , log2 b − 1.1 The lower levels r = 0 and r = 1
correspond respectively to individual bins and pairs of bins, while the topmost level r = log2 b− 1
refers to two groups: the first b/2 bins and the last b/2 bins. We skip the topmost level in the tree
because the count at this node is the publicly known number n of clients.

Each client i first computes its local hierarchical histogram Xi as

Xi(r, j) = I
(
l2r(j−1)+1 ≤ ℓi < l2rj

)
,

such that the overall hierarchical histogram can be obtained as H =
∑n

i=1Xi. As previously,
each client adds discrete Gaussian noise ξi ∼ NZ(0, σ

2I) with scale parameter σ2. These noisy
hierarchical histograms are summed up using a secure summation oracle so that the server receives
an approximate hierarchical histogram Ĥ which approximates the true H =

∑n
i=1X

′
i .

The benefit of hierarchical histograms for cumulative distribution estimation comes from utilizing
counts at nodes higher up in the tree. Using a maximal dyadic partition Pj of the range [1, j], we have
F (j) =

∑
(r,o)∈Pj

H(r, o) from summing up |Pj | ≤ log2 b terms. For instance, the dyadic partition
for j = 15 is [1, 15] = [1, 8] ∪ [9, 12] ∪ [13, 14] ∪ [15], where the counts of each range on the right
side can be obtained from an intermediate node in the hierarchical histogram H .

Similarly, we estimate the cumulative distribution from the approximate hierarchical histogram Ĥ

as F̂j =
∑

(r,o)∈Pj
Ĥ(r, o) where Pj is a maximal dyadic partition of [1, j]. Similar to the previous

approach, we estimate the quantile with (1). The full algorithm is given in Algorithm 2.

3 Utility and Privacy Analysis

We now analyze the privacy and utility of Algorithm 1. First, recall the definition of zero-concentrated
differential privacy [4]: a randomized algorithm A satisfies (1/2)ε2-concentrated differential privacy
if the Rényi α-divergence Dα(A(x)∥A(x′)) ≤ αε2/2 for all α ∈ (0,∞) and all sequences x,x′ of
inputs which differ by the addition or removal of the data of one client. Intuitively, the addition or
removal of one client should not change the output distribution of the randomized algorithm by much,
as measured by the Rényi divergence. A smaller value of ε implies a stronger privacy guarantee.

Error Criterion. The bin edge lj corresponding to index j ∈ [b] approximates the p-quantile well if
the cumulative mass Fj ≈ p. We measure this error of approximation by the difference between the
two sides. Formally, we define the error Rp(F, j) of approximating the p-quantile of the cumulative
function F of a (hierarchical) histogram with index j ∈ [b] by

Rp(F, j) = |Fj − p| . (2)

1We assume for simplicity that b is a power of 2 so that log2 b is an integer.

3

Algorithm 2 Quantile Computation with Distributed Differential Privacy: Hierarchical Histograms

Input: Ring size M , n clients each with ℓi ∈ [0, B], target quantile p ∈ (0, 1), discretization
l0, l1, · · · , lb of [0, B], variance proxy σ2, scaling factor c ∈ Z+

1: Each client i computes a hierarchical histogram Xi(r, j) = I
(
l2r(j−1)+1 ≤ ℓi < l2rj

)
for j =

1, · · · , b/2r and r = 0, · · · , log2 b− 1

2: Each client i samples ξi(r, j) ∼ NZ(0, σ
2) i.i.d. and sets X̃i(r, j) =

(
cXi(r, j) + ξi(r, j)

)
mod M for each r, j

3: Compute S = (
∑n

i=1 X̃i) mod M securely and set Ĥ = S/c

4: Define the cumulative distribution F̂ ∈ Rb as F̂ (j) = (1/n)
∑

(r,o)∈Pj
Ĥ(r, o) using a maximal

dyadic partition Pj of [1, j]
5: return Quantile estimate lj∗p(F̂) corresponding to index j∗p(F̂); cf. Eq. (1)

We define the best achievable error a R∗
p(F) = minj∈[b]Rp(F, j). Note that the best index j∗p(F)

for estimating the p-quantile of the cumulative function F as defined in (1) satisfies j∗p(F) =

argminj∈[b]Rp(F, j). Lastly, we define the quantile error ∆p(F, F̂) of estimating the p-quantile of
the cumulative function F from that of F̂ as

∆p(F̂ , F) = Rp

(
F, j∗p(F̂)

)
. (3)

Essentially, if the index j∗p(F̂) computed from the estimate F̂ corresponds to the p′-quantile of F ,
the quantile error satisfies ∆p(F̂ , F) = |p− p′|.

Privacy and Utility Analysis. We now analyze the differential privacy bound of the flat histogram
approach of Algorithm 1 as well as the error in the quantile computation.
Theorem 1 (Flat histogram). Fix a δ > 0. Suppose that σ ≥ 1/2 and c > 0 are given. We have that
Algorithm 1 satisfies (1/2)ε2-concentrated DP with

ε = min

{√
c2

nσ2
+
ψb

2
,

c√
nσ

+ ψ
√
b

}
,

where ψ = 10
∑n−1

i=1 exp
(
− 2π2σ2i/(i+ 1)

)
≤ 10(n− 1) exp(−2π2σ2). Further, if the modular

base satisfies M ≥ 2+ 2cn+2n
√
2σ2 log(8nb/δ), then we have with probability at least 1− δ that

the quantile error of cumulative function F̂ returned by Algorithm 1 (option 2) is at most

∆p(F̂ , F) ≤ R∗
p(F̂) +

√
2σ2b

c2n
log

4

δ
,

where R∗
p(F̂) is the error in the estimation of p-quantile of histogram F̂ .

Let us interpret the result. The effective noise scale is σ/c. Since the dominant term of the privacy error
is ε ≈ c/(σ

√
n), we choose σ/c ≈ (ε

√
n)−1, so that the algorithm satisfies (1/2)ε2-concentrated

DP. The role of c is to avoid degeneracy of the discrete Gaussian as σ → 0. In particular, the theorem
requires σ ≥ 1/2. Ignoring constants and log factors, the error is

∆p(F̂ , F) ≲ R∗
p(F̂) +

√
b

εn
.

While the quantile error increases with the number b of bins, the discretization error from reducing
the scalars to a histogram typically reduces with b. For instance, for a uniform discretization of [0, B],
the p-quantile of the histogram

∑n
i=1 xi is at most B/b away from the true p-quantile of the scalars

ℓ1, · · · , ℓn. Finally, if we take σ = O(1) and c = O(ε
√
n), the conditions of the theorem require

M ≳ n3/2. We give a similar bound for Algorithm 1 with estimated n (option 1) in Appendix A.
Theorem 2 (Hierarchical Histogram). Fix a δ > 0. Suppose that σ ≥ 1/2 and c > 0 are given. We
have that Algorithm 2 satisfies (1/2)ε2-concentrated DP with (ψ is given in Theorem 1)

ε = min

√
c2 log22 b

nσ2
+ ψb,

c log2 b√
nσ

+ ψ
√
2b

 .

4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DP parameter

10 3

10 2

10 1

Qu
an

til
e

Er
ro

r

n = 512, b = 64, distribution = Uniform
Flat (estimated n)
Flat (exact n)
Hierarchical

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DP parameter

10 2

10 1

Qu
an

til
e

Er
ro

r

n = 128, b = 32, distribution = 2

Flat (estimated n)
Flat (exact n)
Hierarchical

Figure 2: Distributed quantile estimation with Algorithms 1 and 2. Here, n is the number of clients, b is the
number of bins, and bit width refers to log2 M where M is the ring size. The scalar in each client is drawn
from either Unif([0, B]) or χ2(4) distribution clipped to [0, B], where B = 10 in both cases. We plot the worst
quantile error (3) in computing the p-quantile for p ∈ {0.1, 0.2, · · · , 0.9}, versus ε for (ε, 10−5)-DP. We plot
the mean values across 10 runs, while the error bars denote the standard deviation.

Further, if the modular arithmetic is performed on base M ≥ 2+ 2cn+2n
√

2σ2 log(16nb/δ), then
we have with probability at least 1− δ that the quantile error of cumulative function F̂ returned by
Algorithm 2 is at most

∆p(F̂ , F) ≤ R∗
p(F̂) +

√
4σ2

c2n
log2 b log

4b

δ
.

Comparing the Two Approaches. Asymptotically, the flat histogram approach has an error of√
b/εn, while the hierarchical one has an error of poly log b/εn, showing the asymptotic optimality

(up to log factors) of the latter. However, the behavior is more nuanced for intermediate values of b
and n. In particular, disregarding the error term ψ in the privacy cost, we have that the flat approach
is better for √

2b log(4/δ)

εn
≤

√
4 log32(b) log(4b/δ)

εn
.

With a failure probability of δ = 0.05, this corresponds (approximately) to b ≤ 2000. Under
the Freedman–Diaconis rule [12] where one chooses the number of bins as b = O(n2/3), the flat
histogram is better for n approximately below 2.5 × 106. In federated learning scenarios where
quantile statistics are computed along with learning (e.g. [1, 18]), n is the number of clients per round
and is of the order of 102 to 104 in typical cross-device settings [17]. Our analysis suggests that we
should prefer the flat histogram approach in this case although it is asymptotically suboptimal.

4 Numerical Experiments: Quantile Estimation

We test the privacy and utility of Algorithms 1 and 2 in synthetic examples. We consider n ∈
{128, 512} clients, each with a scalar that is distributed as Unif([0, B]) or χ2(4) distributions. We
clip all scalars to [0, B] with B = 10. For all experiments, we consider the uniform quantization of
[0, B] into b bins, where b ∈ {32, 64}. We fix the ring size at M = 218, which is large enough to
prevent any modular wraparound as required by the theorems.

Both Algorithms 1 and 2 require two further parameters: the variance-proxy σ2 and the granularity
parameter c, which together determine the privacy leakage. As per the discussion following Theo-
rem 1, we take σ2 = 2 and vary c. We plot the utility of each algorithm, as measured by the quantile
error (3) versus the privacy parameter ε required for (ε, 10−5)-differential privacy.

Results. Figure 2 shows the numerical results. First, we note that all three approaches have small
quantile errors. For the left plot, the flat histogram with estimated n (Algorithm 1, option 1) has a
quantile error of 0.03 at ε = 1; this means we might find the 47th or 53rd percentile instead of the
median. This error quickly falls below 0.01 at ε = 5.

5

5 10 15 20
DP parameter

0.236

0.238

0.240

0.242

0.244

M
isc

la
ss

ifi
ca

tio
n

Er
ro

r Mean error

5 10 15 20
DP parameter

0.50

0.51

0.52

0.53

0.54

0.55

0.56

90th percentile error

FedAvg (no DP)
-FL (no DP)

DP-FedAvg
DP- -FL + flat hist.
DP- -FL + hier. hist.

Figure 3: ∆-FL vs. FedAvg with (ε, 1/n)-DP on a synthetic classification task in R20 with 10 classes and
n = 2500 clients and a tail parameter p = 0.75. The error bars denote the standard deviation across 5 runs.

Second, we note that the flat histogram approaches tend to outperform the hierarchical approach
at small ε despite their asymptotic suboptimality. For instance, the flat histogram with estimated n
(error = 0.03) vastly outperforms the hierarchical approach (error = 0.09) at ε = 1 in the left plot.
These values are 0.10 and 0.26 respectively for the right plot; the latter might be too inexact to even
be useful depending on the application. At ε ≥ 10, all the methods are within one standard deviation
of each other. Overall, these results corroborate the theoretical analysis of Section 3.

5 Application to Distributionally Robust Federated Learning

We develop an end-to-end differentially private version of ∆-FL [18], a distributionally robust
approach to federated learning. It minimizes the tail mean of the per-client losses, known formally as
the superquantile [23], which is defined for a continuous random variable Z as Sp(Z) = E[Z|Z >
Qp(Z)], where Qp(Z) is its p-quantile. In each round of their algorithm consists of two steps:

(a) Quantile estimation: Compute the p-quantile of the per-client losses, and,
(b) Tail Aggregation: Aggregate local updates from clients whose loss is larger than the quantile.

We propose an end-to-end differentially private version of this algorithm, called DP-∆-FL. We
estimate the quantile of the losses clipped to a tuned bound B using Algorithm 1 or 2. We clip the
weight updates to a norm bound C, and add Gaussian noise, similar to DP-FedAvg [20]. The total
privacy loss is calculated by composing the privacy loss across both the quantile and weight updates,
and the number of rounds together with amplification by subsampling using the bounds of [27].

We calculate the noise scales σq of the quantile and σw of the weight update so that the overall
algorithm satisfies (ε, 1/n)-differential privacy and tune the loss boundB, norm boundC, the number
of bins b and the ratio of the privacy budget to assign to the quantile estimation.

We experiment with a synthetic dataset contains k = 10 classes in d = 20 dimensions, and n = 2500
training clients, each with 100 examples. We consider robustness to a label shift, while the class-
conditional distribution is fixed. The marginal across classes is a Dirichlet distribution with parameter
0.5 for the training clients and 0.01 for the test clients. For further details, we refer to Appendix B.

Results. We compare the distributional robustness in terms of the 90th percentile of the per-client
errors in Figure 3; we also show the mean test error. First, we see that both the flat or hierarchical
histograms lead to similar performance for DP-∆-FL (equal up to one std.).

We also observe that DP-∆-FL has a much smaller tail error than DP-FedAvg at each ε; the gap is
4.3 pp at ε = 5. Its performance does not degrade much with privacy and is within 1pp of ∆-FL
without DP at ε = 5. Importantly, the 90th percentile error of DP-∆-FL is better than FedAvg without
DP. In terms of the mean error, DP-∆-FL is within 0.2-0.4 pp to DP-FedAvg, comparable to the gap
between the non-private versions (0.24 pp).

We conclude from the experiments that (a) DP-∆-FL has a privacy-utility tradeoff similar to DP-
FedAvg compared to their respective non-private versions, and (b) the distributional robustness of
∆-FL is also enjoyed by its private variant.

6

Acknowledgements

The authors thank Peter Kairouz and Lun Wang for fruitful discussions. We acknowledge support
from NSF DMS 2023166, DMS 1839371, CCF 2019844, the CIFAR program “Learning in Machines
and Brains”, faculty research awards, and a JP Morgan PhD fellowship. This work has been partially
supported by MIAI – Grenoble Alpes, (ANR-19-P3IA-0003). This work was performed while
Krishna Pillutla was at the University of Washington.

References
[1] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially

private learning with adaptive clipping. NeurIPS, 34:17455–17466, 2021.

[2] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical Secure Aggregation
for Privacy-Preserving Machine Learning. In ACM SIGSAC Conference on Computer and
Communications Security, pages 1175–1191, 2017.

[3] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[4] Mark Bun and Thomas Steinke. Concentrated Differential Privacy: Simplifications, Extensions,
and Lower Bounds. In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography
Conference, volume 9985, pages 635–658, 2016.

[5] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and Continual Release of Statistics.
ACM Trans. Inf. Syst. Secur., 14(3):26:1–26:24, 2011.

[6] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Answering Range Queries Under
Local Differential Privacy. VLDB, 12(10):1126–1138, 2019.

[7] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
Data, Ourselves: Privacy Via Distributed Noise Generation. In EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 486–503. Springer, 2006.

[8] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating Noise to
Sensitivity in Private Data Analysis. J. Priv. Confidentiality, 7(3):17–51, 2016.

[9] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under
continual observation. In STOC, pages 715–724, 2010.

[10] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. A Pragmatic Introduction to Secure
Multi-Party Computation. Foundations and Trends in Privacy and Security, 2(2-3):70–246,
2018.

[11] Hans Föllmer and Alexander Schied. Convex measures of risk and trading constraints. Finance
Stochastics, 6, 2002.

[12] David Freedman and Persi Diaconis. On the histogram as a density estimator: L 2 theory.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(4):453–476, 1981.

[13] Jennifer Gillenwater, Matthew Joseph, and Alex Kulesza. Differentially Private Quantiles. In
ICML, pages 3713–3722, 2021.

[14] Isabelle Guyon. Design of experiments of the neurips 2003 variable selection benchmark. In
NeurIPS 2003 Workshop on Feature Extraction and Feature Selection, volume 253, page 40,
2003.

[15] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the Accuracy of
Differentially Private Histograms Through Consistency. VLDB, 3(1):1021–1032, 2010.

7

[16] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The Distributed Discrete Gaussian Mechanism
for Federated Learning with Secure Aggregation. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
5201–5212. PMLR, 2021.

[17] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaı̈d Har-
chaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara
Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr,
Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu,
and Sen Zhao. Advances and Open Problems in Federated Learning. Found. Trends Mach.
Learn., 14(1-2):1–210, 2021.

[18] Yassine Laguel, Krishna Pillutla, Jérôme Malick, and Zaid Harchaoui. A Superquantile Ap-
proach to Federated Learning with Heterogeneous Devices. In CISS, pages 1–6. IEEE, 2021.

[19] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In AISTATS,
pages 1273–1282, 2017.

[20] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning Differentially
Private Recurrent Language Models. In ICLR, 2018.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[22] R Tyrrell Rockafellar and Stanislav Uryasev. Optimization of Conditional Value-at-Risk.
Journal of Risk, 2:21–42, 2000.

[23] R Tyrrell Rockafellar and Stanislav Uryasev. Conditional Value-at-Risk for General Loss
Distributions. Journal of banking & finance, 26(7):1443–1471, 2002.

[24] Adam Smith. Privacy-preserving Statistical Estimation with Optimal Convergence Rates. In
STOC, pages 813–822, 2011.

[25] Adam D. Smith, Abhradeep Thakurta, and Jalaj Upadhyay. Is Interaction Necessary for
Distributed Private Learning? In IEEE Symposium on Security and Privacy, pages 58–77, 2017.

[26] Christos Tzamos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, and Ilias Zadik. Optimal private
median estimation under minimal distributional assumptions. NeurIPS, pages 3301–3311, 2020.

[27] Yuqing Zhu and Yu-Xiang Wang. Poission Subsampled Rényi Differential Privacy. In Proc. of
ICML, volume 97, pages 7634–7642, 2019.

A Additional Results and Proof Details

In this section, we give some additional results and present the proofs of the privacy-utility bounds.

For ease of handling negative integers, we perform modular arithmetic throughout over the ring
{−M/2 + 1, · · · ,−1, 0, 1, 2, · · · ,M/2} rather than {0, 1, · · · ,M − 1}.

Flat Histogram with Estimated Counts. We first give the analogue of Theorem 1 for the option of
estimating the counts.

8

Theorem 3. Consider the setting of Theorem 1. If the modular base satisfies M ≥ 2 + 2cn +
2n
√
2σ2 log(8nb/δ), then we have with probability at least 1−δ that the quantile error of cumulative

function F̂ returned by Algorithm 1 (option 1, estimated count) is at most

∆p(F̂ , F) ≤ R∗
p(F̂)

(
1 +

√
2σ2b

c2n
log

4

δ

)
+ (1 + p)

√
2σ2b

c2n
log

4

δ
,

where R∗
p(F̂) is the error in the estimation of p-quantile of histogram F̂ .

Compared to Theorem 1, this only has an additional factor on the irreducible error term R∗
p(F̂).

A.1 Privacy-Utility with Flat Histograms

We now prove Theorem 1 and Theorem 3.

Proof of Theorem 1 and Theorem 3. We start by defining and controlling the probabilities of some
events. Throughout, let δ > 0 be fixed. Define the event

Emod =
n⋂

i=1

b⋂
j=1

{
−M − 2

2n
≤ cxi,j + ξi,j ≤

M − 2

2n

}
. (4)

Note that under Emod, no modular wraparound occurs in the algorithm, i.e., x̃i = cxi + ξi and

ĥ =

n∑
i=1

x̃k
c

=

n∑
i=1

(
xk +

ξk
c

)
.

We will show later that Emod holds with high probability; for now, we assume that it holds.

Privacy Analysis. We start by establishing the sensitivity of the sum query over xk’s as 1. Define
the input space X to be the canonical basis vectors in Rb, i.e., the set of all vectors in {0, 1}b with
only one 1, and let X ∗ = ∪∞

r=1X r denote the set of all sequences of elements of X . We consider
the rescaled sum query A((x1, · · · , xN)) =

∑n
i=1 cxi. The L2 sensitivity S(A) of this query A is

supremum over all X ∈ X ∗ and X ′ which is obtained by concatenating x′ to X:

S(A) = sup
X,X′

∥A(X)−A(X ′)∥2 = sup
x′∈X

c ∥x′∥2 = c .

We invoke the privacy bound of sums of discrete Gaussians (see e.g. [16]) to claim that an algorithm A
returning A(x) +

∑n
i=1 ξk satisfies (1/2)ε2-concentrated DP where ε is as in the theorem statement.

The fact that the quantile and all further functions of it remains private follows from the post-
processing property of DP (also known as the data-processing inequality).

Utility Analysis with Option 1 (estimated count, Theorem 3). Define n̂ =
∑b

j=1 ĥj , as the noisy

analogue to n =
∑b

j=1 hj . We bound the quantile error as

∆p

(
F̂ , F

)
= Rp

(
F, j∗p(F̂)

)
=

∣∣∣∣∣∣ 1n
j∗p(F̂)∑
j=1

hj − p

∣∣∣∣∣∣
≤ 1

n

∣∣∣∣∣∣
j∗p(F̂)∑
j=1

hj − ĥj

∣∣∣∣∣∣+ 1

n

∣∣∣∣∣∣
j∗p(F̂)∑
j=1

ĥj − n̂p

∣∣∣∣∣∣+ p

n
|n̂− n|

≤ max
j′∈[b]

1

cn

∣∣∣∣∣∣
j′∑

j=1

n∑
i=1

ξi,j

∣∣∣∣∣∣+
(
1 +

|n̂− n|
n

)
R∗

p(F̂) +
p

n
|n̂− n| .

Let us define an event Esum under which the first term and last terms are bounded:

Esum =

max
j∈[b]

∣∣∣ j∑
j′=1

n∑
i=1

ξi,j′
∣∣∣ ≤√2σ2nb log(4/δ)

 . (5)

9

Under Esum, we also have

|n− n̂| = 1

c

∣∣∣∣∣∣
b∑

j=1

n∑
i=1

ξi,j

∣∣∣∣∣∣ ≤
√

2σ2nb

c2
log

4

δ
.

Plugging this back into ∆p(ĥ, h) gives us the desired bound, provided Esum holds.

Utility Analysis with Option 2 (exact count, Theorem 1). Similar to the previous case, we have

∆p

(
F̂ , F

)
= Rp

(
F, j∗p(F̂)

)
=

∣∣∣∣∣∣ 1n
j∗p(F̂)∑
j=1

hj − p

∣∣∣∣∣∣
≤ 1

n

∣∣∣∣∣∣
j∗p(F̂)∑
j=1

hj − ĥj

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1n

j∗p(F̂)∑
j=1

ĥj − p

∣∣∣∣∣∣
≤ max

j′∈[b]

1

cn

∣∣∣∣∣∣
j′∑

j=1

n∑
i=1

ξi,j

∣∣∣∣∣∣+R∗
p(F̂) .

Under Esum, the desired bound holds.

Bounding the Failure Probability. The algorithm fails when at least one of Emod or Esum fail to
hold. We have from Claim 4 that P(Emod) ≥ 1− δ/4 under the given assumptions. From, Claim 5,
we have P(Esum|Emod) ≥ 1− δ/2. We bound the total failure probability of the algorithm with a
union bound as

P(Ēsum ∪ Ēmod) ≤ P(Ēsum|Emod)P(Emod) + P(Ēsum|Ēmod)P(Ēmod) + P(Ēmod)

≤ P(Ēsum|Emod) + 2P(Ēmod) ≤ δ .

We state and prove bounds on probabilities of the events Emod, Esum defined above.

Claim 4. If M ≥ 2 + 2cn+ 2n
√
2σ2 log(8nb/δ), then P(Emod) ≥ 1− δ/4.

Proof. Each discrete Gaussian random variable ξi,j is centered and sub-Gaussian with variance proxy
σ2. A Cramér-Chernoff bound (see e.g. Lemma 10) gives us the exponential tail bound

P
(
|ξi,j | >

√
2σ2 log(8nb/δ)

)
≤ δ

4nb
.

Using a union bound for i ∈ [n], j ∈ [b] and xi,j ∈ {0, 1} completes the proof.

Claim 5. We have that P(Esum|Emod) ≥ 1− δ/2.

Proof. Under Emod, no modular wraparound occurs, so we can ignore the modulo operations. Each
discrete Gaussian random variable ξi,j is centered and sub-Gaussian with variance proxy σ2, i.e.,
E[ξi,j] = 0 and E[exp(λξi,j)] ≤ exp(λ2σ2/2) for all λ ∈ R. Therefore, ζj :=

∑n
i=1 ξi,j is centered

and sub-Gaussian with variance proxy nσ2, since E[ζj] = 0, and

E[exp(λζj)] =
n∏

i=1

E[exp(λξi,j)] ≤ exp(λ2σ2n/2)

by independence. We get a bound on the partial sums from the maximal inequality (see e.g.
Lemma 11); this involves constructing a martingale (

∑j
j′=1 ζj′)

b
j=1 and applying the maximal

inequality. The bound we get is

P

max
j∈[b]

∣∣∣ j∑
j′=1

ζj′
∣∣∣ > t

 ≤ exp

(
− t2

2σ2nb

)
.

Plugging in t =
√

2σ2nb log(2/δ) completes the proof.

10

A.2 Privacy-Utility with Hierarchical Histograms

We now prove Theorem 2.

Proof of Theorem 2. We start by defining and controlling the probabilities of some events. Through-
out, let δ > 0 be fixed. Define the event

Emod =

n⋂
i=1

log2 b−1⋂
r=0

b/2r⋂
j=1

{
−M − 2

2n
≤ cXi(r, j) + ξi(r, j) ≤

M − 2

2n

}
. (6)

Note that under Emod, no modular wraparound occurs in the algorithm. Thus, for all valid levels r
and indices j, we have X̃i(r, j) = cXi(r, j) + ξi(r, j) and

Ĥ(r, j) =

n∑
i=1

X̃i(r, j)

c
=

n∑
i=1

(
Xi(r, j) +

ξi(r, j)

c

)
.

Next, we define the event

Ediff =

b⋂
j=1

{∣∣∣Fj − F̂j

∣∣∣ ≤√2σ2n log2(b) log(4b/δ)
}
. (7)

We will show later that Emod and Ediff holds with high probability; for now, we assume that they
hold.

Privacy Analysis. The privacy analysis follows similar to Theorem 1, with the difference that
each hierarchical histogram has a total 2b entries (as opposed to b for the flat histogram) and an ℓ2
sensitivity of log2 b (as opposed to 1 for the flat histogram), since it contains one non-zero entry for
each level of the tree.

Utility Analysis. We denote Fj as F (j) for ease of reading. Using the triangle inequality, we get,

∆p(F̂ , F) =
∣∣∣F (j∗p(F̂))− p

∣∣∣
≤ 1

n

∣∣∣F (j∗p(F̂))− F̂
(
j∗p(F̂)

)∣∣∣+ ∣∣∣∣ 1nĤ(j∗p(F̂))− p

∣∣∣∣
≤ max

j∈[b]

{
1

n

∣∣∣F (j)− F̂ (j)
∣∣∣}+R∗

p(F̂) .

The first term is bounded under Ediff and this gives the utility bound.

Bounding the Failure Probability. Follows similar to Theorem 1 by using Claim 6 and Claim 7
instead of Claim 4 and Claim 5 respectively.

We state and prove bounds on probabilities of the events Emod, Ediff defined above.

Claim 6. If M ≥ 2 + 2cn+ 2n
√
2σ2 log(16nb/δ), then P(Emod) ≥ 1− δ/4.

Proof. Each discrete Gaussian random variable ξi(r, j) is centered and sub-Gaussian with variance
proxy σ2 (cf. Property 8). A Cramér-Chernoff bound (cf. Lemma 10) gives us the exponential tail
bound

P
(
|ξi(r, j)| >

√
2σ2 log(16nb/δ)

)
≤ δ

8nb
.

Applying the union bound over i = 1, · · · , n and the 2b− 2 nodes in each hierarchical histogram xi
(each node corresponding to one (r, j) pair) completes the proof.

Claim 7. We have P(Ediff |Emod) ≥ 1− δ/2.

11

Proof. UnderEmod, we have that Ĥ(j) = H(j)+
∑n

i=1

∑
(r,o)∈Pj

ξi(r, o), where Pj is the maximal

dyadic partition of [1, j] with |Pj | ≤ log2 b. Thus, ζj := Ĥ(j)−H(j) is sub-Gaussian with variance
proxy n|Pj |σ2 ≤ nσ2 log2 b. A Cramér-Chernoff bound (cf. Lemma 10) gives us

P
(
|ζj | >

√
2σ2n log2(b) log(4b/δ)

)
≤ δ

2b
.

Applying a union bound over j = 1, · · · , b completes the proof.

A.3 Useful Results

We state the sub-Gaussian property of the discrete Gaussians.
Property 8. Let ξ be distributed according to NZ(µ, σ

2). Then, E[ξ] = µ. Furthermore, if µ = 0,
then ξ is sub-Gaussian with variance proxy σ2, i.e., E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0.

The distributed discrete Gaussian mechanism gets privacy guarantees by adding a sum of discrete
Gaussian random variables. We give a bound on its privacy. The following lemma is due to [16].
Lemma 9 (Privacy of Sum of Discrete Gaussians). Fix σ ≥ 1/2. Let A : X →d be a deterministic
algorithm with ℓ2-sensitivity S for some input space X . Define a randomized algorithm A, which
when given an input x ∈ X , samples ξ1, · · · , ξn ∼ NZ(0, σ

2Id) and returns A(x) +
∑n

i=1 ξi. Then,
A satisfies ε2/2-concentrated DP with

ε = min

{√
S2

nσ2
+
ψd

2
,
S√
nσ

+ ψ
√
d

}
,

where ψ = 10
∑n−1

i=1 exp
(
− 2π2σ2i/(k + 1)

)
≤ 10(n− 1) exp(−2π2σ2).

Next, we record standard concentration results (see e.g. [3]).
Lemma 10 (Cramér-Chernoff). Let ξ be a real-valued and centered sub-Gaussian random variable
with variance proxy σ2, i.e., E[ξ] = 0 and E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0. Then, we have
for any t > 0,

P(|ξ| > t) ≤ 2 exp

(
− t2

2σ2

)
.

Lemma 11 (Maximal Inequality). Let ξ1, ξ2, · · · be i.i.d. centered sub-Gaussian random variables
with variance proxy σ2, i.e., E[ξj] = 0 and E[exp(λξj)] ≤ exp(λ2σ2/2) for all λ ∈ R and
j = 1, 2, · · · . Then, it holds for any t > 0 and integer n ≥ 1 that

P

max
i∈[n]

∣∣∣ k∑
j=1

ξj

∣∣∣ > t

 ≤ 2 exp

(
− t2

2σ2n

)
.

B DP-∆-FL: Background and Details

We describe the proposed DP-∆-FL approach, a variant of ∆-FL [18] under end-to-end differential
privacy.

B.1 ∆-FL Review

We review the ∆-FL objective and the corresponding optimization algorithm [18].

Suppose we have n clients, where the objective on client i, denoted fi : Rd → R, is the expected loss
on client i under its data distribution qi for i = 1, · · · , n.

The ∆-FL objective minimizes the tail mean of the per-client losses, which can be formalized using a
notion called superquantile [22]. The p-superquantile of a continuous random variable Z is defined
as Sp(Z) = E[Z |Z > Qp(Z)], where Qp(Z) is the p-quantile of Z. More generally, the following
definition is applicable to both discrete and continuous random variables:

Sp(Z) = min
η∈R

{
η +

1

1− p
E [max{0, Z − η}]

}
.

12

Algorithm 3 The ∆-FL Algorithm [18]

Input: Initial iterate w(0), number of communication rounds T , number of clients per round m,
number of local updates τ , local step size γ

1: for t = 0, 1, · · · , T − 1 do
2: Sample m clients from [n] without replacement in S
3: Find the p-quantile of

(
fi(w

(t)))i∈S ; call this Q(t)

4: for each selected client i ∈ S in parallel do
5: Set π̃(t)

i = I
(
fi(w

(t)) ≥ Q(t)
)

6: Initialize w(t)
k,0 = w(t)

7: for k = 0, · · · , τ − 1 do
8: w

(t)
i,k+1 = (1− γλ)w

(t)
i,k − γ∇fi(w(t)

i,k)
9: end for

10: end for
11: w(t+1) =

∑
i∈S π̃

(t)
i w

(t)
i,τ/

∑
i∈S π̃

(t)
i

12: end for
13: return wT

In this expression, the quantile Qp(Z) is obtained as the left end-point of the argmin set over η.

The ∆-FL objective is to minimize the superquantile of the per-client losses:

gp(w) := Sp
(
f1(w), · · · , fn(w)

)
, (8)

where w ∈ Rd denotes the model parameters.

Algorithm. The algorithm to optimize the ∆-FL objective proposed by [18] can be interpreted more
transparently as below. We take this alternate interpretation as opposed to the one used in [18] as it
directly allows us to derive a version with end-to-end differential privacy.

The superquantile is a nonsmooth function, and so is the ∆-FL objective gp. However, leveraging
duality, the following subdifferential expression can be derived.
Proposition 12. Suppose the per-client objective fi is L-smooth for each i, and let the parameter
p be such that np is an integer. For all w such that fi(w) ̸= fj(w) for i ̸= j, a subgradient of the
objective (8) is given by

∂gp(w) ∋
n∑

i=1

π⋆
i fi(w) , where π∗

i =
I(fi(w) ≥ Qp)∑n
j=1 I(fj(w) ≥ Qp)

,

and Qp = Qp(f1(w), · · · , fn(w)) is the p-quantile of the losses and ∂gp refers to the regular
subdifferential of gp.

Proof. Without loss of generality, we assume that f1(w) < · · · < fn(w). Due to the dual expression
for the supqerquantile [11], we have the equivalent expression

gp(w) = max

{
n∑

i=1

πifi(w) : 0 ≤ πi ≤
1

n(1− p)
,

n∑
i=1

πi = 1

}
. (9)

By Danskin’s theorem, we have that

∂gp(w) ∋
n∑

i=1

π⋆
i ∇fi(w) , (10)

where π⋆ attains the argmax in the expression above. Next, we invoke the a closed form expression of
the superquantile for discrete random variables [23, Proposition 8] (this is analogous to the expression
Sp(Z) = E[Z |Z > Qp(Z)] for continuous random variables Z) to get

gp(w) =
1

(1− p)n

n∑
i=i⋆+1

fi(w) +

(
1− ⌊(1− p)n⌋

(1− p)n

)
fi⋆(w) ,

13

where i⋆ = ⌈(1− p)n⌉. Comparing with (9), this gives a closed-form expression for π⋆, which is
unique because Fi⋆−1(w) < Fi⋆(w) < Fi⋆+1(w). By the definition of the quantile, also observe that
Qp = fi⋆(w). Plugging in this closed form expression of π⋆ into (10) completes the proof.

Using this expression, the algorithm of [18] interleaves federated averaging steps with quantile
estimation. Specifically, the local updates w+

i from the subsample of m selected clients i ∈ S are
aggregated to update the global model with the following two steps:

• compute Qp = Qp(fi(w) : i ∈ S),
• aggregate the updates from the tail clients where fi(w) ≥ Qp to find the new global model w+ as

w+ =
1

|Sp|
∑
i∈Sp

w+
i , where Sp = {i : fi(w) ≥ Qp} .

Similar to FedAvg, this aggregation rule enjoys a simplification in the case of a single local update
per-client with a learning rate γ. Specifically, under the assumption of full client participation
(i.e., m = n), if the local update w − w+

i = γ∇fi(w) is a single gradient step, the aggregated
update is simply a subgradient step w − w+ = γ∇gp(w) where we denote the subgradient as
∇gp(w) ∈ ∂gp(w).

The overall algorithm is summarized in Algorithm 3.

B.2 End-to-End Differential Privacy with DP-∆-FL

To obtain an end-to-end differentially private version of ∆-FL, we make two modifications to
Algorithm 3. First, we estimate the quantile with distributed differential privacy, using either
Algorithm 1 or Algorithm 2. Second, we modify the weight aggregation step (line 11) by clipping the
weight updates and add Gaussian noise to obtain differential privacy via the Gaussian mechanism.
The overall algorithm is given in Algorithm 4.

Privacy Accounting. We now discuss the privacy spent in each communication round. For simplicity,
we assume the number m(t) =

∑
i∈S I(fi(w(t)) ≥ Q(t)) of selected clients is publicly known.

Claim 13. Consider the setting of Algorithm 4 with noise scale σw, norm bound C and Algorithm 2
with b bins and noise scale σ = σq. Each round of Algorithm 4 satisfies (1/2)ε2-concentrated DP
where

1

2
ε2 =

1

2
ε2q +

σ2
w

2C2
,

where εq is obtained from Theorem 1 or 2 for Algorithm 1 or 2 respectively.

Proof. The (1/2)ε2q-concentrated DP of the quantile computation comes from Theorem 1 or 2. Since

the contribution δ(t)i of each client has ℓ2 norm
∥∥∥δ(t)i

∥∥∥ ≤ C and we add Gaussian noise N (0, σ2
wId),

the weight update step satisfies σ2
w/(2C

2)-concentrated DP. The proof is completed by noting that
concentrated differential privacy composes additively.

To obtain a bound on the concentrated DP of the entire algorithm, we rely on generic upper bounds
of [27] for privacy amplification by subsampling.

B.3 Experimental Setup

We consider a synthetic classification dataset and train a linear model on it.

Dataset Description. We create a 10-class classification dataset in d = 20 dimensions, inspired by
[14]. The input x for each class k is drawn from a Gaussian of mean µi and identity covariance in
R15. The means µi’s are the corners of a random polytope in R15. We add 2 features that are linear
combinations of the 15 informative ones and 3 features that are pure noise. Overall, the dataset can
be generated using the make classification function of scikit-learn [21] as

14

Algorithm 4 DP-∆-FL: ∆-FL with End-to-End Differential Privacy

Input: Initial iterate w(0), number of communication rounds T , number of clients per round m,
number of local updates τ , local step size γ, ℓ2 norm bound C for weight updates, noise variance
σ2
w

1: for t = 0, 1, · · · , T − 1 do
2: Sample m clients from [n] without replacement in S
3: Estimate the p-quantile of fi(w(t)) for i ∈ S with distributed differential privacy (Algorithm 1

or 2); call this Q(t)

4: Set m(t) =
∑

i∈S I
(
fi(w

(t)) ≥ Q(t)
)

5: for each selected client i ∈ S in parallel do
6: Initialize w(t)

k,0 = w(t)

7: for k = 0, · · · , τ − 1 do
8: w

(t)
i,k+1 = (1− γλ)w

(t)
i,k − γ∇fi(w(t)

i,k)
9: end for

10: Define the norm-clipped update contributed by the client

δ
(t)
i =

C (w

(t)
i,τ−w(t))

max
{
C,

∥∥∥w(t)
i,τ−w(t)

∥∥∥
2

} , if fi(w(t)) ≥ Q(t)

0d, else

11: end for
12: Sample Gaussian noise ξ(t) ∼ N (0, σ2

wId) and update

w(t+1) = w(t) +
1

m(t)

∑
i∈S

δ
(t)
i + ξ(t)

13: end for
14: return wT

x , y = m a k e c l a s s i f i c a t i o n (
n s a m p l e s = i n t (5 e5) , n f e a t u r e s =20 ,
n i n f o r m a t i v e =15 , n r e d u n d a n t =2 , n r e p e a t e d =0 ,
n c l a s s e s =10 , n c l u s t e r s p e r c l a s s =1 ,
c l a s s s e p = 5 . 0 , hype rcube = F a l s e , r a n d o m s t a t e =2345

)

We now split this dataset into a federated dataset with n = 2500 training clients and n′ = 500
validation and n′′ = 500 test clients. The data distribution qi(x, y) = qi(y)qi(x|y) across the clients
is designed to exhibit a label shift, i.e., the distribution qi(y) over labels for each client is different
while the class-conditional distribution qi(x|y = k) = N (µk, Id) is the same across clients. The
class distribution qi(y) on each training client i is drawn from a Dirichlet distribution Dir(0.5), while
that for a validation or test client is drawn from Dir(0.01). We sample 100 input-output pairs for each
training, validation, and test client.

Model and Per-Client Objective. We use a linear model (with intercept) on each client and the
multinomial logistic loss, also known as the cross entropy loss, to define the per-client objective.

Algorithms and Hyperparameters. We compare Algorithm 4 with DP-FedAvg [20], a version of
FedAvg with differential privacy.

Both algorithms used a single full gradient step per client with a fixed learning rate of 0.1. For each
algorithm, we sample 100 clients per round and run the training for a total of 1000 rounds. We vary
the privacy budget ε ∈ {3, 5, 10, 15, 20} and tune the following hyperparameters for each algorithm.

For DP-FedAvg, we tune the ℓ2 norm bound (analogous to C in Algorithm 4) and set the noise scale
σw depending on the target privacy budget ε and the norm bound C. For Algorithm 4, we allocate
r-times the privacy budget of the weight updates to the quantile updates. In addition, we also tune:

15

• the loss upper bound B, so that all losses are truncated to [0, B],
• the number of bins b in the hierarchical histogram,
• the ℓ2 norm bound C for the weight update.

We tune all 4 hyperparameters with a grid search and set the noise scale σw for the weight update,
and σq/c for the quantile update depending on the selected hyperparameters and the privacy budget ε.
The objective of the grid search was to minimize the 90th percentile of the misclassification errors
across all validation clients.

The ranges of the hyperparameters considered are quantile privacy ratio r ∈ {0.1, 0.25, 0.5, 0.75},
loss upper bound B ∈ {0.7, 0.9, 1.1, 1.3, 1.5},2, number of bins b ∈ {16, 32, 64}, and update norm
C ∈ {0.9, 1.1, 1.3, 1.5}.3

2The loss at convergence was around 0.7, while that at random guessing is log 10 ≈ 2.3.
3These correspond approximately to the 0.3, 0.5, 0.7, 0.9 quantiles of the update norms of FedAvg without

differential privacy, during the latter half of training.

16

	Introduction
	Setting and Algorithms
	Utility and Privacy Analysis
	Numerical Experiments: Quantile Estimation
	Application to Distributionally Robust Federated Learning
	Additional Results and Proof Details
	Privacy-Utility with Flat Histograms
	Privacy-Utility with Hierarchical Histograms
	Useful Results

	DP–FL: Background and Details
	-FL Review
	End-to-End Differential Privacy with DP–FL
	Experimental Setup

