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ABSTRACT

We consider strongly-convex-strongly-concave (SCSC) saddle point (SP) problems which frequently
arise in many applications from distributionally robust learning to game theory and fairness in machine
learning. We focus on the recently developed stochastic accelerated primal-dual algorithm (SAPD),
which admits optimal complexity in several settings as an accelerated algorithm. We provide high
probability guarantees for convergence to a neighborhood of the saddle point that reflects accelerated
convergence behavior. We also provide an analytical formula for the limit covariance matrix of the
iterates for SCSC quadratic problems under Gaussian perturbations. This allows us to develop lower
bounds for quadratic problems that show that our analysis is tight. We also provide a risk-averse
convergence analysis characterizing the “Conditional Value at Risk” and the “Entropic Value at Risk”
of the distance to the saddle point, highlighting the trade-offs between the bias and the risk associated
to an approximate solution.

1 Introduction

We consider strongly convex/strongly concave (SCSC) saddle point problems of the form:

min
x∈X

max
y∈Y
L(x, y) ≜ f(x) + Φ(x, y)− g(y), (1.1)

where X and Y are finite-dimensional Euclidean spaces, f : X → R and g : Y × R are closed, strongly convex
functions, and Φ : X × Y → R is a smooth convex-concave function – see Assumption 1 for details.

SCSC problems can arise in many applications and contexts. In unconstrained and constrained optimization problems,
saddle-point formulations arise naturally when the problems are formulated based on the Lagrangian duality. Further-
more, the SP formulation in (1.1) encompasses many key problems such as robust optimization [3] – here Y represents
the uncertainty set from which nature (adversary) picks an uncertain model parameter y, and the objective is to choose
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x ∈ X that minimizes the worst-case cost maxy∈Y L(x, y), i.e., a two-player zero-sum game. Other applications where
SCSC problems arise include but are not limited to supervised learning with non-separable regularizers (where Φ(x, y)
may not be bilinear) [25], unsupervised learning [25] and various image processing problems, e.g., denoising, [6].

In this work, we are interested in stochastic SCSC problems where the partial gradients ∇xΦ(x, y) and ∇yΦ(x, y)
are not deterministically available, but instead we postulate access to their stochastic estimate. Such a setting arises
frequently in large-scale optimization and machine learning applications where the gradients are estimated from either
streaming data or from random samples of data (see e.g. [40, 15, 5]). In this work, we focus on stochastic first-order
(FO) methods that relies on stochastic estimates of the gradient information which have been the leading computational
approach for computing low-to-medium-accuracy solutions because of their cheap iterations and mild dependence on
the problem dimension and data size.

Relevant work. Stochastic algorithms generate a sequence of primal and dual iterate pairs zk = (xk, yk) ∈ X ×Y ≜
Z starting from an initial point (x0, y0) ∈ dom f × dom g ≜ Z. Two popular metrics to access the quality of a
random solution (x̂, ŷ) returned by a stochastic optimization algorithm are the expected gap and the expected distance
squared defined as

G(x̂, ŷ) ≜ E[ sup
(x,y)∈X×Y

{L(x̂, y)− L(x, ȳ)}], D(x̂, ŷ) ≜ E[∥x̂− x∗∥2+∥ŷ − y∗∥2], (1.2)

respectively where (x∗, y∗) is the saddle point which is unique due to the strong convexity of f and g. The iteration
complexity in these two metrics depend naturally on the block Lipschitz constants Lxx, Lxy and Lyy, i.e. Lipschitz
constants of∇xΦ(·, y),∇yΦ(x, ·) and∇yΦ(·, y) as well as on the strong convexity constants µx and µy of the functions
f and g. In particular, [11] shows that a multi-stage variant of Stochastic Gradient Descent Ascent (SGDA) algorithm

achieves the guarantee D(xk, yk) ≤ ϵ after k = O(κ2 ln(1/ϵ) + δ2

µϵ
) iterations where δ2 = max(δ2x, δ

2
y), δ

2
x and δ2y are

bounds on the variance of the stochastic gradients with respect to x and y respectively while µ := min(µx, µy) are
L := max(Lxx, Lxy, Lyy) are the worst-case strong convexity and Lipschitz constants and κ = L/µ is defined as the
condition number. SGDA consists of Jacobi-style updates in the sense that stochastic gradient descent and ascent steps
are taken simultaneously. In [36], it is shown that for deterministic SCSC problems, if gradient descent ascent (GDA) is
modified with Gauss-Seidel-style updates where the dual variable is updated after the primal variable in an alternating
fashion, than an accelerated convergence rate (where iteration complexity scales with κ instead of κ2) can be obtained.
However, as discussed in [36], this comes with the price that Gauss-Seidel style updates greatly complicate the analysis
because every iteration of an alternating algorithm is a composition of two half updates. Simultaneous Jacobi-style
updates are easier to analyze in general and can be viewed as solving a structured a variational inequality problem
where many existing techniques directly apply [14, 7].

There are also other algorithms for stochastic SCSC problems. The authors in [11] show that the Stochastic Optimistic

Gradient Descent Ascent (OGDA) algorithm achieves an iteration complexity of O(κ ln(1/ϵ) + δ2

µϵ
) in expected

distance squared. In [38], a stochastic accelerated primal-dual (SAPD) algorithm which consists of Gauss-Seidel type

updates is proposed. SAPD achieves O
((

Lxx

µx
+

Lyx√
µxµy

+
Lyy

µy
+
(
δ2x
µx

+
δ2y
µy

)
1
ϵ

)
log( 1ε )

)
, in a weighted expected

distance squared metric. This complexity is optimal for bilinear problems. To our knowledge, SAPD is also the fastest
single-loop algorithm for solving stochastic smooth SCSC problems that are non-bilinear.

Despite these results that provide guarantees in expectation based on the metrics (1.2), high probability bounds for the
iterates of saddle-point problems are relatively much less studied. In particular results provided in the metrics (1.2) do
not allow us to control tail events, i.e. the expected gap and distance can be smaller than a given target threshold ε, but
the iterates can in principle still be arbitrarily far away from the saddle point with a non-zero probability. In this context,
high probability guarantees are key in the sense that they allow us to control tail probabilities and quantify how many
iterations are needed for the iterates to be in a neighborhood of the saddle point with a given probability level p ∈ (0, 1).

While high-probability guarantees are available in the optimization setting for stochastic gradient descent-like methods
[18, 28, 9], they are more limited in the SP setting. Among existing results, in [35], it is shown that the expected gap
G(xk, yk) ≤ ε with probability at least p ∈ (0, 1) after O

(
1
ε log(

1
1−p ) +

δ2

µε log(
1

1−p )
)

iterations for possibly non-
smooth, SCSC problems. In [34], high probability bounds are given for online algorithms applied to a stochastic saddle
point problem where the objective is time-varying and is revealed in a sequential manner and and the data distribution
over which stochastic gradients are estimated depends on the decision variables. However, these high-probability
guarantees are obtained for non-accelerated algorithms; therefore the high probability bounds do not enjoy accelerated
decay of the dependence to initialization with a linear rate that scales linearly with the condition number.

2
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Figure 1: Representation of expectation, VaR (quantiles) and CVaR of a gamma distribution with shape parameters
k = 3 and scale parameter θ = 5.

Contributions. In this paper, we study the speed-accuracy trade-off of stochastic primal-dual methods from a risk-
averse perspective. Our main focus is the SAPD method, for which we provide high-probability bounds where the
dependence to the initialization decays in an accelerated manner with an accelerated linear rate. We also provide tight
upper-bounds with respect to several risk measures illustrated in Figure 1, including the Value at Risk (corresponding
to a high probability bound), the Conditional Value at Risk (CVaR), and the Entropic Value at Risk (EVaR). Our
convergence analysis also captures the performance of the standard SGDA which is studied apart in our Appendix.

While our analysis builds upon concentration results developed in [18], and already utilized in a variety of works on
stochastic first order methods [8, 39, 22], we address two technical challenges specific to SAPD: (i) the ergodic nature
of the analysis based on which SAPD was previously shown to converge requires to adapt accordingly the recursive
concentration inequality [18] and (ii) the Gauss-Seidel iteration based on which SAPD was developped significantly
complicates the analysis, as one may observe in comparison to the the analysis of SGDA in the Appendix.

We complement our results with an in-depth analysis of the performance of SAPD on quadratic problems subject to
Gaussian perturbations. This contribution, based on orthogonal arguments, is key to show the tightness of our general
analysis.

Notations. Throughout this manuscript, X = Rn and Y = Rm denote finite dimensional vector spaces equipped with
the Euclidean norm ∥u∥≜⟨u, u⟩ 12 , and Z ≜ X × Y . We adopted Z++ for counting numbers and Z+ = Z++ ∪ {0}.
For A ∈ Rn×n, ∥A∥F= (

∑n
i,j=1A

2
i,j)

1/2 denotes the Frobenius norm of A and ρ(A) denotes its spectral radius. We
recall that for all A, ρ(A) ≤ ∥A∥F . For any convex set C ∈ X , IC denotes the indicator function of C, i.e., IC(x) = 0
if x ∈ C, and equal to +∞ otherwise. For a given proper, closed and convex function φ:X → R∪{+∞}, proxφ(·)
denotes the associated proximal operator: x 7→ argminu∈X φ(u) +

1
2∥u− x∥

2. By strong convexity/strong concavity,
the problem in (1.1) admits a unique saddle point [10], z⋆≜(x⋆, y⋆) which satisfies:

L(x⋆, y) ≤ L(x⋆, y⋆) ≤ L(x, y⋆) ∀(x, y) ∈ X × Y. (1.3)
We use the Landau notations o, O, and Θ to describe the asymptotic behavior of functions. For u ∈ R∪{±∞}, a
function f(x) = o(g(x)) in a neighborhood of u if f(x)

g(x) → 0 as x → u. f(x) = O(g(x)) if there exist positive
constants C such that |f(x)|≤ C|g(x)| in some neighborhood of u. Finally f(x) = Θ(g(x)), if f(x) = O(g(x)) and
g(x) = O(f(x)). Given an m-dimensional vector v = [v1, v2, . . . , vm]T , Diag(v) denotes the m×m matrix whose
diagonal is the v vector.

2 Technical Background and Preliminaries

2.1 Stochastic Accelerated Primal-Dual (SAPD) Method

SAPD, displayed in Algorithm 1, is a stochastic accelerated primal-dual method developed in [38] which uses
stochastic estimates ∇̃xΦ and ∇̃yΦ of the partial gradients∇xΦ and∇yΦ. SAPD extends the accelerated primal dual
method (APD) proposed in [16] to the stochastic setting. Given primal and dual stepsizes τ and σ and (number of
iterations) horizon N , SAPD uses proximal-gradient-type updates while applying momentum averaging to the partial
gradients with respect to y. It achieves accelerated rates and an optimal bias-variance trade-off for the SCSC scenario
when stochastic gradients admit bounded variance [38]. When the coupling function is bilinear, it reduces to the
Chambolle-Pock algorithm given in [6] for the deterministic setting.

3
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Algorithm 1 SAPD Algorithm

Require: Parameters τ, σ, θ. Starting point (x0, y0). Horizon n.
1: Initialize:

x−1 ← x0, y−1 ← y0, q̃0 ← 0
2: for k ≥ 0 do
3: s̃k ← ∇̃y Φ(xk, yk, ω

y
k) + θ q̃k ▷ Momentum averaging

4: yk+1 ← proxσg(yk + σ s̃k)

5: xk+1 ← proxτf (xk − τ ∇̃x Φ(xk, yk+1, ω
x
k))

6: q̃k+1 ← ∇̃y Φ(xk+1, yk+1, ω
y
k+1)− ∇̃y Φ(xk, yk, ω

y
k)

return (xn, yn)

For the convergence analysis of SAPD, we next introduce the following assumption which basically says that the
coupling function Φ is smooth. Such an assumption is standard for the analysis of first-order methods, see e.g. [23, 14,
37].

Assumption 1. Let f :X → R∪{+∞} and g:Y → R∪{+∞} be two functions with convexity moduli µx > 0 and
µy > 0, respectively. The coupling function Φ:Rd×Rd → R is continuously differentiable on an open set containing
dom f × dom g such that:

(i) For all y ∈ dom g, Φ(·, y) is convex on dom f .

(ii) For all x ∈ dom f , Φ(x, ·) is concave on dom g.

(iii) There exists Lxx,Lyy ≥ 0 and Lxy,Lyx > 0 satisfying for all (x, y), (x̄, ȳ) ∈ dom f × dom g:

∥∇x Φ(x, y)−∇x Φ(x̄, ȳ)∥ ≤ Lxx∥x− x̄∥+Lxy∥y − ȳ∥,
∥∇y Φ(x, y)−∇y Φ(x̄, ȳ)∥ ≤ Lyx∥x− x̄∥+Lyy∥y − ȳ∥.

Following the literature on stochastic saddle-point algorithms [24, 20, 7], we assume that only (noisy) stochastic
estimates ∇̃y Φ(xk, yk, ω

y
k), ∇̃x Φ(xk, yk+1, ω

x
k) of the partial gradients∇y Φ(xk, yk),∇x Φ(xk, yk+1) are available,

where ωxk , ω
y
k are random variables that are being revealed sequentially as we discuss next. First, we introduce some

notation: Let (ωxk)k≥0, (ωyk)k≥0
be two sequences of random variables revealed sequentially, in the order:

ωy0 → ωx0 → ωy1 → ωx1 → ωy2 → · · · ,

and let (Fyk)k≥0 and (Fxk)k≥0 denote the associated filtration:

Fy0 = σ(ωy0 ), F
x
0 = σ(ωy0 , ω

x
0 ),

Fyk = σ(Fxk−1, σ(ω
y
k)), Fxk = σ(Fyk, σ(ω

x
k)), ∀ k ≥ 1.

For any k ≥ 0, we introduce the following random variables to represent the gradient noise:

∆y
k ≜ ∇̃y Φ(xk, yk, ω

y
k)−∇y Φ(xk, yk), ∆x

k ≜ ∇̃x Φ(xk, yk+1, ω
x
k)−∇x Φ(xk, yk+1).

Often times, stochastic gradients are assumed to be unbiased with a bounded variance conditional on the history of the
iterates. Such an assumption is standard in the study of stochastic optimization algorithms and stochastic approximation
theory [17] and frequently arises in the context of stochastic gradient methods that estimate the gradients from randomly
sampled subsets of data [5].

Assumption 2. For any k ≥ 0, the gradient noise satisfies

E
[
∆y
k|F

x
k−1

]
= 0, E [∆x

k|F
y
k] = 0.

Assumption 3. For any k ≥ 0, there exists scalars δx, δy > 0 such that

E
[
∥∆y

k∥
2|Fxk−1

]
≤ δ2y, E

[
∥∆x

k∥2|F
y
k

]
≤ δ2x.

Based on Assumptions 1, 2, 3; [38] established bounds for the expected squared distance to the saddle point
E
[
∥zk − z∗∥2

]
. Such upper bounds consists of a “bias” term (that decays exponentially fast characterizing how

fast the initial conditions are forgotten) and a variance term that scales with the noise variance δ2x, δ
2
y . In this setting,

4
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the rate of decay of the bias coincides with the ”convergence rate” of the underlying SAPD algorithm without noise (i.e.
when δ2x = δ2y = 0).

In this paper, our focus is to obtain high probability guarantees as well as bounds on the risk of the distance to the
saddle point ∥zk − z∗∥. For quantifying risk, we will resort to ϕ-divergence-based risk measures borrowed from the
risk measure theory [4], including CVaR EVaR and χ2-divergence. We introduce the following “light-tail” assumption,
which basically says that the gradient noise is norm-subGaussian. Random vectors with Norm-subGaussian distribution
were introduced in [19], and encompass a large class of random vectors including subGaussian random vectors. In the
rest of the paper, through all our results, we will assume that Assumption 4 holds in addition to Assumptions 1 and 2.

Definition 2.1. A random vector X: Ω→ Rd is norm-subGaussian with proxy σ, denoted by X ∈ nSG (σ), if

P
[
∥X − E[X]∥ ≥ t

]
≤ 2e

−t2

2σ2 , ∀t ∈ R .

Assumption 4. For any k ≥ 0 the random variables ∆x
k and ∆y

k are conditionally norm-subGaussians with respective
proxy parameters δx, δy > 0. More precisely, for all t ≥ 0, we almost surely have

P[∥∆y
k∥≥ t|F

x
k−1] ≤ 2e

−t2

2δ2y , P[∥∆x
k∥≥ t|F

y
k ] ≤ 2e

−t2

2δ2x .

Such subGaussian noise assumptions are common in large-scale stochastic optimization [27, 12, 18]. In machine
learning applications, where stochastic gradients are often estimated on sampled batches, noisy estimates typically
behave as Gaussians for moderately high sample sizes, as a consequence of the central limit theorem [26]. Furthermore,
they also can be volontarily imposed from perturbations set by practitionners for privacy reasons [21, 32] We also recall
some basic properties of norm-subGaussian random vectors which will be used repeatedly in the proof of our results.

2.2 Elementary Properties of Norm-subGaussian Vectors

In this section, we recall elementary properties of norm-subGaussian vectors. Proofs, which follow from standard
arguments that can be found in textbooks such as [8, 6], are given in Section 6 of the Appendix for the sake of
completeness. First, note that given arbitrary α > 0 and X: Ω → Rd such that X ∈ nSG (σ) for some σ > 0, we
immediately have the following implication:

X ∈ nSG (σ) =⇒ αX ∈ nSG (ασ) . (2.1)

For instance, X : Ω → Rd is norm-subGaussian when X is subGaussian, or it is bounded, i.e., ∃B > 0 such that
∥X∥≤ B with probability 1. As remarked in [19, Lemma 3], the squared norm of a norm-subGaussian vector is
sub-Exponential.

Definition 2.2. A random variable U : Ω→ R is subExponential with proxy K > 0 if it satisfies

E
[
eλ|U|

]
≤ eλK , ∀λ ∈ [0,

1

K
].

In particular, if we take U = ∥X∥2, with X ∈ nSG (σ), the following lemma shows that U is subExponential with
proxy K = 8σ2.

Lemma 2.1. Let X ∈ nSG (σ) be such that E[X] = 0. Then, for any λ ∈
[
0, 1

4σ2

]
,

E
[
eλ∥X∥2

]
≤ 2e4λσ

2

− 1 ≤ e8λσ
2

. (2.2)

Proof of Lemma 2.1. We follow standard arguments from [33]. First note that, for any k ∈ Z++, we have

E[∥X∥k] =
∫ +∞

t=0

P[∥X∥k≥ t] d t =
∫ +∞

t=0

P[∥X∥≥ t1/k] d t

≤ 2

∫ ∞

t=0

e−t
2
k /(2σ2) d t

= k(2σ2)
k
2

∫ ∞

u=0

e−uu
k
2−1 du = k(2σ2)

k
2 Γ

(
k

2

)
.

5
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Hence, noting that Γ(k) = (k − 1)!, by the monotone convergence theorem,

E[eλ∥X∥2

] = 1 +

∞∑
k=1

λk

k!
E[∥X∥2k] ≤ 1 +

∞∑
k=1

λk

k!
(2k)(2σ2)kΓ(k)

≤ 1 + 2

∞∑
k=1

(
2λσ2

)k
=

2

1− 2λσ2
− 1,

with the last equality being valid for any λ ∈ [0, 1
2σ2 ). Finally, we get E

[
eλ∥X∥2

]
≤ 2e4λσ

2 − 1 for any λ ∈ [0, 1
4σ2 ]

since for any u ∈ [0, 12 ],
1

1−u ≤ e
2u.

Lemma 2.2. Let X ∈ nSG (σ) such that E[X] = 0. Then, for any u ∈ Rd and λ ≥ 0, it holds that

E
[
eλ⟨u,X⟩

]
≤ e8λ

2∥u∥2σ2

.

Proof of Lemma (2.2). For u = 0, the inequality to prove is trivial. Assume u ̸= 0. From Lemma 2.1 and Cauchy-
Schwarz inequality, we have

E
[
eλ

2⟨u,X⟩2
]
≤ E[eλ

2∥u∥2∥X∥2

] ≤ e8λ
2∥u∥2σ2

, (2.3)

for all λ ∈ [0, 1
2
√
2σ∥u∥ ]. Thus, for any such λ, noticing that et ≤ t+ et

2

for t ∈ R, we obtain

E
[
eλ⟨u,X⟩

]
≤ E

[
λ⟨u,X⟩+ eλ

2⟨u,X⟩2
]
≤ e8λ

2∥u∥2σ2

,

where the second inequality follows from (2.3) and the assumption that E[X] = 0. Moreover, for λ ≥ 1
2
√
2∥u∥σ , we

have by Cauchy Schwarz’s inequality and Lemma 2.1 that

E[eλ⟨u,X⟩] ≤ E
[
e

8λ2σ2∥u∥2
2 +

∥X∥2

16σ2

]
≤ e

1
2 (1+8λ2σ2∥u∥2) ≤ e8λ

2∥u∥2σ2

,

where the last inequality is due to e
1+t
2 ≤ et for t ≥ 1.

2.3 Robustness via risk measures

In this paper, we investigate the robustness of SAPD under different convergence metrics, borrowed from the theory
of risk measures [30]. Our motivation is to provide convergence guarantees under various types of distributional
perturbations on the stochastic estimates of the gradients ∇̃Φx, ∇̃Φy . As we focus on smooth and SCSC problems, we
can rely on the squared distance of the iterates (xn, yn) to the solution (x⋆, y⋆) to quantify sub-optimality. Precisely,
sub-optimality will be measured in terms of the weighted squared distance to the solution, i.e.,

Dn≜
1

2τ
∥xn − x⋆∥2+1

2

( 1
σ
− α

)
∥yn − y⋆∥2, (2.4)

for some α ∈ [0, σ−1).

The first risk measure of interest is the quantile function, defined for a random variable U : Ω→ R as

Qp(U) ≜ inf
t∈R

P[U ≤ t] ≥ p.

Quantile upperbounds correspond to high-probability results, and quantile bounds have been already fairly studied to
assess the robustness of stochastic algorithms [12, 27, 18]. One key contribution of this paper is the derivation of an
upperbound on the quantiles of the distance metric Dn, defined in (2.4), exhibiting a tight bias-variance trade-off –see
Section 3.3.

Furthermore, we investigate the robustness of SAPD with respect to three convex risk measures, based on φ-
divergences [4]. Generally speaking, for a given proper convex function φ : R+ → R satisfying φ(1) = 0 and
limt→0+ φ(t) = φ(0), the associated φ-divergence, is defined as

Dφ(Q||P) ≜
∫
Ω

φ

(
dQ
dP

)
dP,

for any input probability measures Q,P such that Q≪ P, i.e. Q is absolutely continuous with respect to P. Different
choices of φ-divergence result in different risk measures [4, 31].

6
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Risk measure Formulation Divergence

CVaRp, p ∈ [0, 1) 1
1−p

∫ 1

p′=p
Qp′(U)dp′ φ(t) = I [0, 1

1−p ]
(t)

EVaRp, p ∈ [0, 1) infη>0

{
− log(1−p)

η + 1
η log(E(e

ηU ))
}

φ(t) = t log t− t+ 1

Rχ2,r, r ≥ 0 infη≥0

{√
1 + 2r

√
E(U − η)2+ + η

}
φ(t) = 1

2 (t− 1)2

Table 1: Three examples of φ-divergence based risk measures studied in this paper.

Definition 2.3. For any r ≥ 0, we define the φ-divergence based risk measure at level r as follows:

Rφ,r(U) ≜ sup
Q≪P

Dφ(Q||P)≤r

EQ [U ] (2.5)

where P denotes an arbitrary reference probability measure.

In this paper, we investigate the performances of SAPD under three φ-divergence based risk measures, summarized in
Table 1. First, given p ∈ [0, 1), we consider the conditional value at risk (CVaRp), defined as

CVaRp(U)≜
1

1− p

∫ 1

p′=p

Qp′(U) dp′. (2.6)

The CVaR admits the variational representation (2.5) with φ : t 7→ I [0,(1−p)−1](t) for any r > 0.Define the indicator
function. As an average of the higher quantiles of U , CVaRp(U) holds intuitively as a statistical summary of the tail of
U , beyond its p-quantile. While high-probability bounds do not take into account the price of failure tied to the event
U ≥ Qp(U), the CVaR presents the advantage of integrating the whole tail of the distribution, which may makes it
more suitable to assess the robustness of a given random variable.

The second convex risk measure we investigate is the Entropic Value at Risk [1], denoted EVaR, and is defined as

EVaRp(U) ≜ inf
η>0

{
− log(1− p)

η
+

1

η
log(E(eηU ))

}
.

The EVaR admits the variational representation (2.5) with φ : t 7→ t log(t) − t + 1 and the parameter r is set to
− log(1− p) for given p ∈ [0, 1) –see e.g. [31]. EVaR exhibits a higher tail-sensitivity than CVaR, in the sense that
CVaRp(U) ≤ EVaRp(U), for all p ∈ [0, 1) whenever EVaRp(U) <∞.

Finally we will also derive results in terms of the χ2-divergence based risk measure, defined as (2.5) with φ : t 7→
1
2 (t− 1)2.

3 Main Results

In this section, we derive risk-sensitive bounds for the convergence of the SAPD algorithm (see Algorithm 1). We
first recall in Section (3.1) a general class of hyperparameters for which SAPD is known to converge at an accelerated
convergence rate in expectation [38]. We present in Section 3.2 the main results of this paper, which consists of
convergence analysis of SAPDin high-probability and with respect to the three convex risk measures presented in Table 1.
We finally demonstrate in Section 3.3 some tight characteristics of our analysis.

3.1 A class of admissible parameters for SAPD

SAPD was shown to converge in expectation in [38], at a linear rate ρ ∈ (0, 1) provided the inequality

1
τ + µx − 1

ρτ 0 0 0 0

0 1
σ + µy − 1

ρσ

(
θ
ρ − 1

)
Lyx

(
θ
ρ − 1

)
Lyy 0

0
(
θ
ρ − 1

)
Lyx

1
τ − Lxx 0 − θρLyx

0
(
θ
ρ − 1

)
Lyy 0 1

σ − α − θρLyy
0 0 − θρLyx − θρLyy

α
ρ


⪰ 0, (3.1)
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holds for some α ∈ [0, σ−1). An important class of solutions to the matrix inequality in (3.1) takes the following form:

τ =
1− θ
θµx

, σ =
1− θ
θµy

, θ ≥ θ̄, (3.2)

for some θ̄ ∈ (0, 1) that can be explicitly given. It is shown in [6] that for a particular value of θ1, this parametric choice
of primal-dual step sizes τ and σ in the momentum parameter θ ensures acceleration of the algorithm (CP) proposed
in [6] for the deterministic case when Φ is bilinear. Indeed, CP Algorithm can be obtained as a special case of SAPD for
bilinear coupling functions Φ. In other words, (3.1) describes a general set of parameters for which SAPD will converge
in expectation; however risk-sensitive guarantees, including in high-probability are not known. In the forthcoming
results, we study SAPD for parameters satisfying (3.1), and obtain convergence rates in high probability, in CVaR, in
EVaR, and in the χ2-divergence-based risk measure, as defined in Table 1. The special parameterization (3.2) will be
key to demonstrate the sharpness of our convergence analysis.

3.2 Risk-averse convergence analysis

The main result of this section establishes the convergence of SAPD in high probability, and its proof will be provided in
Section 4.

Theorem 3.1. Suppose (xn, yn)n≥1 are generated by SAPD, initialized at an arbitrary tuple (x0, y0) ∈ X ×Y . For all
n ∈ N, p ∈ (0, 1) and τ, σ > 0, and θ ≥ 0 satisfying (3.1) for some ρ ∈ (0, 1) and α ∈ [0, σ−1), it holds that

P
[
Dn+1 + (1− ρ)Dn ≤ 2

(
1 + ρ

2

)n(
5

4
Eτ,σ + Ξ

(1)
τ,σ,θ δ̄

2

)
+

4Ξ
(1)
τ,σ,θ δ̄

2

1− ρ

(
1 + Ξ

(2)
τ,σ,θ log

(
1

1− p

))]
≥ p, (3.3)

whereDn= 1
2τ ∥xn−x

⋆∥2+ 1−ασ
2σ ∥yn−y

⋆∥2, Eτ,σ ≜ 1
2τ ∥x0−x

⋆∥2+ 1
2σ∥y0−y

⋆∥2, and δ̄ ≜ max{δx, δy}; furthermore,
Ξ
(1)
τ,σ,θ and Ξ

(2)
τ,σ,θ are constants that do not depend on n and p, they only depend on the problem and algorithm

parameters.

Remark 3.1. It is possible to choose the SAPD parameters satisfying (3.1) so that ρ = 1− c
κ for some constant c > 0

[38]. Therefore, the decay rate of the bias term 1+ρ
2 = 1− c/2

κ in Theorem 3.1 demonstrates an accelerated behavior
that scales with κ instead of κ2 dependence of SGDA methods [11]. It is worth noting that for any given ρ ∈ (0, 1),
to check if there exists SAPD parameters τ, σ, θ such that the bias component of E[D2

n] decreases to 0 linearly with a
rate coefficient at most ρ, one needs to solve a 5-dimensional SDP, i.e., after fixing ρ, checking the feasibility of (3.1)
reduces to an SDP problem, see [38] for details.

Using Theorem 3.1 and building on the representation of the CVaR in terms of the quantiles, we can deduce a bound on
CVaRp(D

1
2
n ) as shown in Theorem 3.2, where we also provide bounds on the entropic value at risk and on the χ2-based

risk measure, as defined in Table 1.

Theorem 3.2 (Bounds on Risk Measures). Under the premise of Theorem 3.1, the following bounds hold for all n ∈ N
and p ∈ (0, 1):

CVaRp

(
D

1
2
n+1

)
≤

(
1 + ρ

2

)n/2 (
(1 + ρ)Eτ,σ + 2Ξ

(1)
τ,σ,θ δ̄

2
)1/2

+

√
4Ξ

(1)
τ,σ,θ δ̄

2

1− ρ

(
1 + Ξ

(2)
τ,σ,θ

(
1 + log

( 1

1− p

)))
, (3.4)

EVaRp(D
1
2
n+1) ≤

(
1 + ρ

2

)n
2 (

(1+ρ)Eτ,σ+2Ξ
(1)
τ,σ,θ δ̄

2
)1/2

+

√
4Ξ

(1)
τ,σ,θ δ̄

2

1− ρ

(
1 +

√
Ξ

(2)
τ,σ,θ

(√
log

( 1

1− p

)
+

√
π

))
, (3.5)

where Dn, Ξ(1)
τ,σ,θ, Ξ(2)

τ,σ,θ and δ̄ are as defined in Theorem 3.1. Furthermore, for all n ∈ N and r > 0, the right-hand

side of (3.5) with p = 1− 1
1+r is an upper bound onRχ2,r(D

1/2
n+1).

Proof. The CVaR bound in (3.4) directly follows from Corollary 1 applied to the process Vn introduced in (4.19), with
the associated constants as defined in (4.23). Furthermore, the EVaR bound in (3.5) directly follows from Corollary 2
applied to the same (Vn)n≥0. Finally, the bound onRχ2,r(D

1/2
n ) follows from (3).

1see [6, 48].
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3.3 Tightness analysis

We will discuss in this section that the constants given in Theorem 3.1 are tight in the sense that under the Chambolle-
Pock parameterization given in (3.2), which corresponds to a particular solution of the matrix inequality in (3.1), the
dependency of these constants to θ and p cannot be improved. To this end, we consider quadratic problems subject to
additive isotropic Gaussian noise for which we can do exact computations, i.e., both {∆x

k} and {∆y
k} are iid Gaussian

random vector sequences with isotropic covariances, and these sequences are independent from each other as well.

In Section (C.1) of the appendix, under the isotropic Gaussian noise assumption, we show that the distribution πn of
the iterates zn≜(xn, yn) converges to a Gaussian distribution π∞ with mean (x∗, y∗) and a covariance matrix Σ⋆ for
which we provide a formula in (C.6).

For simplicity of the discussion, consider running SAPD using (CP) parameters given in (3.2) on the following one-
dimensional instance of the general quadratic problem (C.1) studied in depth in Section C.

min
x∈R

max
y∈R

1

2
x2 + xy +

1

2
y2, (3.6)

where we assume that θ ≥ θ̄ as in (3.2). We also set the gradient noise variance as δ2x = δ2y = 1. In this example, the
unique saddle point is at (x∗, y∗) = (0, 0). By our Corollary 4, this ensures that the distribution πn of the generated
sequence zn≜(xn, yn) converges to a centered Gaussian π∞ in distribution with the covariance matrix Σ⋆ given
in (C.6). If we let z∞ denote a random variable with the stationary distribution π∞, in the next proposition we provide
lower bounds on the quantiles of ∥z∞∥2 and compare them to the upper bounds we derived in Theorem 3.1.

Theorem 3.3. Let (zn)n≥0 be the sequence initialized at an arbitrary tuple z0 = (x0, y0) generated by SAPD on
Problem (3.6) under the parameterization (3.2). Then, for any p(0, 1), the p-quantile Qp(∥z∞∥2) of the squared norm
of the limit z∞ = limn→∞ zn satisfieshere, since we talk about convergence in distribution, maybe we should use
another notation as one may read it as a.s. convergence.

ψ1(p, θ) ≤ Qp(∥z∞∥2) ≤ ψ2(p, θ),

where ψ1 and ψ2 satisfy ψ1(p, θ) = (1 − θ) log(1/(1 − p))Θ(1) and ψ2(p, θ) = (1 − θ)O(1 + log(1/(1 − p))), as
θ → 1.

Proof. See Appendix, section C.3

4 Proof of Main Results

4.1 Concentration inequalities through recursive control

In this section, we provide general concentration inequalities that will be specialized later for the analysis of SAPD and
SGDA . The following proposition is a variant of the recursive control inequality derived in [8, 18] to analyze the
dynamical system corresponding to the stochastic gradient descent (SGD) method for minimizing smooth and strongly
convex functions with bounded domains.

Proposition 4.1. Let (Fn)n≥0 be a filtration on (Ω,F ,P). Let (Vn)n≥0, (Tn)n≥0, and (Rn)n≥0, be three scalar
stochastic processes adapted to (Fn)n≥0 with following properties: there exist σR, σT > 0 such that for all n ≥ 0,

• Vn is non-negative;

• E
[
eλTn+1 |Fn

]
≤ eλ2σ2

TVn for all λ > 0, i.e., Tn+1 conditionally on Fn is subGaussian;

• E
[
eλRn+1 |Fn

]
≤ eλσ2

R for all λ ∈ [0, 1/σ2
R], i.e., Rn+1 conditionally on Fn is subExponential.

If there exists ρ ∈ (0, 1) such that

Vn+1−Tn+1 −Rn+1 ≤ ρ Vn, ∀n ≥ 0, (4.1)

then for all λ ∈
(
0,min{ 1

2σ2
R
, 1−ρ
4σ2

T
}
)

, it holds that

E
[
eλVn+1

]
≤ eλσ

2
RE
[
e

λ(1+ρ)
2 Vn

]
, ∀ n ≥ 0.

9
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Proof. The proof follows closely the arguments of [18]. For any λ ≥ 0, (4.1) together with Cauchy-Schwarz inequality
implies that

E
[
eλVn+1 |Fn

]
≤ eλρVnE

[
eλ(Tn+1+Rn+1)|Fn

]
≤ eλρVnE

[
e2λTn+1 |Fn

]1/2 E [e2λRn+1 |Fn
]1/2

.

Thus for λ ∈
(
0, 1

2σ2
R

]
, we have

E
[
eλVn+1 |Fn

]
≤ eλσ

2
Reλ(ρ+2λσ2

T )Vn .

Setting 0 ≤ λ ≤ min
{

1
2σ2

R
, 1−ρ
4σ2

T

}
and taking the non-conditional expectation, we ensure that

E
[
eλVn+1

]
≤ eλσ

2
RE
[
eλ

1+ρ
2 Vn

]
.

This completes the proof.

Unrolling the above recursive property on the moment generating function of V provides us with high probability
results on (Vn)n≥0.

Proposition 4.2. Let Vn, Tn, Rn be defined as in Proposition 4.1. Then, for all n ≥ 0 and λ ∈
[
0,min

{
1−ρ
4σ2

T
, 1
2σ2

R

}]
,

we have

E
[
eλVn

]
≤ e

2λσ2
R

1−ρ E
[
eλ(

1+ρ
2 )

n
V0

]
. (4.2)

Furthermore, if V0 = C0 is constant, then

P
[
Vn ≤

(
1 + ρ

2

)n
C0 +

2σ2
R

1− ρ

(
1 + max

{
1, 2

σ2
T

σ2
R

}
log

(
1

1− p

))]
≥ p. (4.3)

Alternatively, if V0 can be expressed as V0 = C0 + U where C0 ≥ 0 is constant and U satisfies

E
[
eλU
]
≤ eαλ+βλ

2

, ∀λ ∈
[
0,

1

ᾱ

]
for some constants α, ᾱ, β > 0, then, for any p ∈ [0, 1) and λ ∈ [0, γ],

P

(
Vn ≤

(
1 + ρ

2

)n
(C0 + α) +

(
1 + ρ

2

)2n

λβ +
2σ2

R

1− ρ
+

1

λ
log

(
1

1− p

))
≥ p, (4.4)

where γ≜ 1−ρ
max{ᾱ,2σ2

R,4σ
2
T } .

Proof. Let us first prove by induction on n that for all λ ∈
(
0,min

{
1−ρ
4σ2

T
, 1
2σ2

R

})
,

E
[
eλVn

]
≤ E

[
eλ(

1+ρ
2 )

n
V0+λσ

2
R

∑n−1
k=0 (

1+ρ
2 )

k]
. (4.5)

For n = 0, this property holds trivially with the convention Σn−1
k=0 = 0 when n = 0. Assuming the inequality holds for

some n ≥ 0, next we show it also holds for n+ 1. According to Proposition 4.1, we have

E
[
eλVn+1

]
≤ eλσ

2
RE
[
eλ

1+ρ
2 Vn

]
≤ eλσ

2
RE
[
eλ

1+ρ
2 ( 1+ρ

2 )
n
V0+λ

1+ρ
2 σ2

R

∑n−1
k=0 (

1+ρ
2 )

k]
= E

[
eλ(

1+ρ
2 )

n+1
V0+λσ

2
R

∑n
k=0(

1+ρ
2 )

k]
,

where the second inequality follows from the induction hypothesis since

0 < λ(1 + ρ)/2 ≤ λ ≤ min

{
1− ρ
4σ2

T

,
1

2σ2
R

}
,

and this completes the induction. Thus, (4.2) follows from using
∑n−1
k=0

(
1+ρ
2

)k
≤ 2

1−ρ within (4.5). The remaining
statements follow from a Chernoff bound; indeed, if V0 = C0 is constant, we obtain

P
[
Vn ≥

(
1 + ρ

2

)n
C0 +

2σ2
R

1− ρ
+ t

]
≤ e−λt

10
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for λ = 1−ρ
2max{σ2

R,2σ
2
T } and t = 1

λ log(
1

1−p ), which implies the desired result.

Next, suppose V0 = C0 + U for some constant C0 and U as in the hypothesis. First, observe that for λ ∈(
0,min

{
1−ρ
4σ2

T
, 1
2σ2

R
, 1
ᾱ

}
,
)

, we have

E
[
eλVn

]
≤ e

2λσ2
R

1−ρ E
[
eλ(

1+ρ
2 )

n
(C0+U)

]
≤ e

λ

(
( 1+ρ

2 )
n
(C0+α)+

2σ2
R

1−ρ

)
+λ2( 1+ρ

2 )
2n
β
.

(4.6)

Thus, for all t ≥ 0,

P
(
Vn >

(
1 + ρ

2

)n
(C0 + α) +

2σ2
R

1− ρ
+ t

)
≤ eλ

2( 1+ρ
2 )

2n
β−λt.

Fixing an arbitrary non-negative λ such that λ ≤ 1−ρ
max{ᾱ,2σ2

R,4σ
2
T } , we have exp(λ2

(
1+ρ
2

)2n
β − λt) = 1 − p ⇐⇒

t = λ( 1+ρ2 )2nβ + 1
λ log(1/(1− p)), which proves (4.4).

Thanks to the recursive control property 4.2, one can derive convergence rates for the CVaR and EVaR risk measures of
the scalar process (Vn)n≥0.

Corollary 1. Let Vn, Tn, Rn, γ be defined as in Proposition 4.2. Then, for any p ∈ [0, 1) and λ ∈ [0, γ],

CVaRp(V
1
2
n ) ≤

(
1 + ρ

2

)n
2 √

C0 + α+ λβ +

√
2

1− ρ
σ2
R +

1

λ

(
1 + log

(
1

1− p

))
. (4.7)

Proof. Note that the first and second terms on the right-hand side of (4.4) can be bounded by
(
1+ρ
2

)n
(C0 + α+ γβ);

hence, by integrating the resulting looser bound with respect to p, and using CVaR’s integral formulation in (2.6), we
obtain

CVaRp(Vn) ≤
(
1 + ρ

2

)n
(C0 + α+ λβ) +

2σ2
R

1− ρ
+

1

λ

(
1 + log

(
1

1− p

))
,

which directly implies (4.7), due to Lemma (5.2) and the sub-additivity of
√
·.

Corollary 2. Let Vn, Tn, Rn, γ be defined as in Proposition 4.2. Then, for any p ∈ [0, 1), and λ ∈ [0, γ],

EVaRp

(
V

1
2
n

)
≤
(
1 + ρ

2

)n/2√
C0 + α+ λβ +

√
2

1− ρ
σR +

(√
1

λ
log(

1

1− p
) +

√
π√
λ

)
. (4.8)

Proof. The bound in (4.4) of Proposition 4.2 ensures that for all p ∈ [0, 1) and λ ∈ [0, γ], the p-th quantile of Vn
satisfies

Qp (Vn) ≤
(
1 + ρ

2

)n
(C0 + α+ λβ) +

2σ2
R

1− ρ
+

1

λ
log

(
1

1− p

)
;

hence, non-negativity of Vn, Lemma 5.2 and sub-additivity of t 7→
√
t together imply that

Qp

(
V 1/2
n

)
≤
(
1 + ρ

2

)n/2√
C0 + α+ λβ +

√
2

1− ρ
σR +

1√
λ
log

(
1

1− p

)1/2

. (4.9)

For n ≥ 0, let

Un≜V 1/2
n −

(
1 + ρ

2

)n/2√
C0 + α+ λβ −

√
2

1− ρ
σR,

and note that (4.9) implies

P (Un > t) ⩽ e−λt
2

∀ t ≥ 0. (4.10)

11
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Therefore, following standard arguments from [33], we have for any η > 0 that

E(eηUn) =

∫ ∞

0

P
[
eηUn > t

]
dt =

∫ ∞

−∞
P
[
eηUn > eu

]
eudu

=

∫ 0

−∞
P
[
eηUn > eu

]
eudu+

∫ ∞

0

P
[
eηUn > eu

]
eudu

≤
∫ 0

−∞
eudu+

∫ ∞

0

e
− λ

η2 u
2

eudu = 1 + e
η2

4λ

∫ ∞

0

e
− λ

η2 (u− η2

2λ )2
du

= 1 + e
η2

4λ

∫ ∞

− η2

2λ

e
− λ

η2 s
2

ds

≤ 1 + ηe
η2

4λ

√
π

λ
≤
(
1 + η

√
π

λ

)
e

η2

4λ ,

where we used (4.10). On the other hand,

EVaRp [Un] = inf
η>0

{− log(1− p)
η

+
1

η
logE

[
eηUn

] }
≤ inf

η>0

− log(1− p)
η

+
1

η

(
η2

4λ
+ η

√
π√
λ

)

=

√
log( 1

1−p )
√
λ

+

√
π√
λ
,

where we used log(1 + x) ≤ x for x ≥ 0. Finally, by translation invariance of the EVaR, we obtain

EVaRp

[
V

1
2
n

]
≤
(
1 + ρ

2

)n/2√
C0 + α+ λβ +

√
2

1− ρ
σR +

(√
1

λ
log
( 1

1− p

)
+

√
π√
λ

)
.

We finish with a bound on the χ2-based risk measure, as defined in Table 1.
Corollary 3. Let Vn, Tn, Rn, γ be defined as in Proposition 4.2. Then, for any r > 0, and λ ∈ [0, γ],

Rχ2,r

(
V

1
2
n

)
≤
(
1 + ρ

2

)n/2√
C0 + α+ λβ +

√
2

1− ρ
σR +

(√
1

λ
log (1 + r) +

√
π√
λ

)
. (4.11)

Proof. By[13, Theorem 5], for all Q≪ P, we have

DφKL(Q,P) ≤ log
(
1 +Dφχ2 (Q,P)

)
,

where φKL(t) = t log(t)− t+ 1. Therefore, for any integrable random variable U : Ω→ R, we get

sup
Q:Dφ

χ2
(Q || P)≤r

EQ[U ]≤ sup
Q:DφKL (Q,P)≤log(1+r)

EQ[U ] = EVaR1−1/(1+r)(U),

whenever EVaR1−1/(1+r)(U) <∞, where we used the EVaR representation given in Table 1. The statement follows
directly from Corollary 2.

In the next section, we design scalar processes which satisfy the above properties while dominating the error on
SGDA and SAPD iterates respectively.

4.2 Proof of Theorem 3.1

The aim of this section is to prove Theorem 3.1. Here the application of the recursive control inequality from Section 4.1
is not straightforward: the Gauss-Seidel iteration,peculiar to SAPD iterates significantly complicates their measurability
properties, as illustrated in Figure 2. We circumvent this issue by introducing a stochastic process that almost surely
upperbounds the distance to the saddle point while exhibiting simpler measurability characteristics.

Our proof combines several ingredients. Namely, the almost sure upper-bound derived in Proposition 4.3, the recursive
control inequality from Proposition 4.2, some elementary concentration results on norm sub-Gaussian vector that we

12
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Figure 2: Measurability of sequences of interest in SAPD. Our analysis is made possible by the introduction of ”noise-
free” counterparts x̂k, ˆ̂xk, ŷk, ˆ̂yk to the iterates xk, yk as defined in (4.13).

review in Section 2.2 and convex inequalities that we prove in Section 4.3.We should reorder things here – we should
not refer to later parts of the paper in the proof.

First, observe that according to Proposition 4.3, we have

En ≤ ρn−1Eτ,σ +

n−1∑
k=0

ρn−1−k (⟨∆x
k, x

⋆−xk+1⟩+ ⟨(1 + θ)∆y
k − θ∆

y
k−1, yk+1 − y⋆⟩

)
= ρn−1Eτ,σ +

n−1∑
k=0

ρn−1−k
(
⟨∆x

k, x
⋆− ˆ̂xk+1⟩+ (1 + θ)⟨∆y

k, ŷk+1− y⋆⟩ − θ⟨∆y
k−1,

ˆ̂yk+1− y⋆⟩
)

+

n−1∑
k=0

ρn−1−k
(
⟨∆x

k,
ˆ̂xk+1−xk+1⟩+ (1 + θ)⟨∆y

k, yk+1 − ŷk+1⟩ − θ⟨∆
y
k−1, yk+1 − ˆ̂yk+1⟩

)
(4.12)

with the pseudo-iterates x̂k, ŷk, ˆ̂xk, ˆ̂yk are defined as follows:

x̂0 ≜ ˆ̂x0 ≜x0, ŷ0 ≜ ˆ̂y0 ≜ y0, (4.13)

x̂k+1 ≜ proxτf (xk − τ ∇x Φ(xk, yk+1)), ŷk+1 ≜ proxτf
(
yk + σ(1 + θ)∇y Φ(xk, yk)− σθ∇y Φ(xk−1, yk−1)

)
,

(4.14)

ˆ̂xk+1 ≜ proxτf
(
xk − τ ∇x Φ(xk, ŷk+1)

)
, ˆ̂yk+1 ≜ proxτg

(
ŷk +σ(1 + θ)∇y Φ(ˆ̂xk, ŷk)− σθ∇y Φ(xk−1, yk−1)

)
.

(4.15)
(4.16)

These pseudo-iterates, which measurability properties are illustrated in Figure 2, will be key for the application of the
high probability bound given in Proposition 4.2.

For k ≥ 0, we also define

P
(1)
k ≜⟨∆x

k, x
⋆− ˆ̂xk+1⟩+ (1 + θ)⟨∆y

k, ŷk+1− y⋆⟩,

P
(2)
k ≜

−θ
ρ
⟨∆y

k,
ˆ̂yk+2− y⋆⟩,

Qk ≜⟨∆x
k,
ˆ̂xk+1−xk+1⟩+ (1 + θ)⟨∆y

k, yk+1 − ŷk+1⟩ − θ⟨∆
y
k−1, yk+1 − ˆ̂yk+1⟩.

Thus, rearranging the sums in (4.12) and using ∆y
−1 = 0, we may write it equivalently as follows:

En ≤ ρn−1Eτ,σ +

n−1∑
k=0

ρn−1−kP
(1)
k +

n−2∑
k=0

ρn−1−kP
(2)
k +

n−1∑
k=0

ρn−1−kQk.

13
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Now notice that for n ≥ 0,

En+1 + (1− ρ)En ≤ ρn−1Eτ,σ +

n−1∑
k=0

ρn−1−kP
(1)
k +

n−2∑
k=0

ρn−1−kP
(2)
k +

n−1∑
k=0

ρn−1−kQk

+ P (1)
n + ρP

(2)
n−1 +Qn

= ρ−1

(
ρnEτ,σ +

n∑
k=0

ρn−kP
(1)
k +

n∑
k=0

ρn−kP
(2)
k +

n−1∑
k=0

ρn−kQk

)
+
(
1− ρ−1

)
P (1)
n − ρ−1P (2)

n + (ρ− 1)P
(2)
n−1 +Qn.

(4.17)

By Proposition 4.6, we obtain

ρ

2
(En+1 + (1− ρ)En) ≤ ρnEτ,σ +

n∑
k=0

ρn−kP
(1)
k +

n∑
k=0

ρn−kP
(2)
k

+

n∑
k=0

ρn−kQ
(
∥∆x

k∥2+∥∆
y
k∥

2+ρ
(
∥∆x

k−1∥2+∥∆
y
k−1∥

2
)
+ ρ2∥∆y

k−2∥
2
)
,

which implies

ρ

2
(En+1 + (1− ρ)En) ≤ ρnEτ,σ +

n∑
k=0

ρn−kP
(1)
k +

n∑
k=0

ρn−kP
(2)
k + 3 Q

n∑
k=0

ρn−k
(
∥∆x

k∥2+∥∆
y
k∥

2
)
, (4.18)

which follows from ∆x
−1 ≜0 and ∆y

−1 = ∆y
−2 ≜0. For n ∈ N, we define Vn, Tn+1 and Rn+1 as follows:

Vn≜ ρnEτ,σ +

n∑
k=0

ρn−kP
(1)
k +

n∑
k=0

ρn−kP
(2)
k + 3 Q

n∑
k=0

ρn−k
(
∥∆x

k∥2+∥∆
y
k∥

2
)
,

Tn+1 ≜P
(1)
n+1 + P

(2)
n+1,

Rn+1 ≜ 3 Q
(
∥∆x

n+1∥2+∥∆
y
n+1∥2

)
;

(4.19)

therefore, (4.18) implies that
ρ

2
(En+1 + (1− ρ)En) ≤ Vn, ∀ n ≥ 0, a.s. (4.20)

Let us now show that Vn satisfies the assumptions of the recursive control inequality in (4.1). Indeed, for any n ≥ 0,

Vn+1 − Vn =(ρ− 1)Vn + P
(1)
n+1 + P

(2)
n+1 + 3 Q

(
∥∆x

n+1∥2+∥∆
y
n+1∥2

)
,

which is equivalent to Vn+1 ≤ ρVn+Tn+1 +Rn+1. Let (Fn)n≥−1 be the filtration defined as F−1 ≜{∅,Ω}, and

Fn = σ (Fn−1 ∪ σ(∆y
n) ∪ σ(∆x

n)) , ∀ n ≥ 0.

We first observe that for all n ∈ N, Vn, Tn and Rn are Fn-measurable; moreover, Vn is non-negative. Second, for any
n ≥ 0, we also note that since ∆x

n and ∆y
n are norm subGaussian conditioned on Fn−1, we get for any λ ≥ 0 that

E
[
eλTn+1 |Fn

]
= E

[
e
λ⟨∆x

n+1,x
⋆ − ˆ̂xn+2⟩+λ

〈
∆y

n+1, (1+θ)(ŷn+2 − y⋆)−θρ−1(ˆ̂yn+3 − y⋆)

〉∣∣∣Fn ]

≤ E
[
e2λ⟨∆

x
n+1,x

⋆ − ˆ
x̂n+2⟩|Fn

] 1
2

E
[
e2λ⟨∆

y
n+1,(1+θ)(ŷn+2 − y⋆)−θρ−1(

ˆ
ŷn+3 − y⋆)⟩|Fn

] 1
2

≤ e16λ
2(δ2x ∥ˆ̂xn+2 − x⋆∥2+δ2y ∥(1+θ)(ŷn+2 − y⋆)−θρ−1(ˆ̂yn+3 − y⋆)∥2)

≤ e16λ
2
(
δ2x ∥ˆ̂xn+2 − x⋆∥2+2δ2y (1+θ)2∥ŷn+2 − y⋆∥2+δ2y

2θ2

ρ2
∥ˆ̂yn+3 − y⋆∥2

)
,

where in the first inequality we used Cauchy-Schwarz inequality, in the second inequality we used Lemma 2.1 together
with ˆ̂xn+2, ŷn+2, ˆ̂yn+3 all being Fn-measurable. Hence, in view of Lemma 4.7, we have

E
[
eλTn+1 |Fn

]
≤ e16λ

2(∥A1∥2δ2x+(∥A2∥2+∥A3∥2)δ2y)(En+1+(1−ρ)En)

≤ e
32λ2

ρ

(
∥A1∥2δ2x+(∥A2∥2+∥A3∥2)δ2y

)
Vn

,

(4.21)

14
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where the second inequality follows from (4.20).

Third, for all n ≥ 0 and λ ∈
(
0, 1

48Qmax{δ2x,δ2y}

)
, we have in view of Lemma 2.1

E
[
eλRn

]
≤ E

[
e6λQ∥∆x

n∥
2
] 1

2 E
[
e6λQ∥∆y

n∥
2
] 1

2 ≤ exp
(
24λQ

(
δ2x + δ2y

))
. (4.22)

Finally, note that ŷ1,
ˆ̂x 1 and ˆ̂y2 are all deterministic quantities; hence, using E[|WXY Z|] ≤

E[W 4]1/4 E[X4]1/4 E[Y 4]1/4 E[Z4]1/4 as a result of Hölder’s inequality and invoking Lemma 2.2, we obtain for

all λ ∈
[
0,
(
96Qmax{δ2x, δ2y}

)−1
]

that

E
[
eλ(V0−Eτ,σ)

]
= E

[
e
λ
(
P

(1)
0 +P

(2)
0 +3Q(∥∆x

0∥
2+∥∆y

0∥
2)

)]
= E

[
eλ⟨∆

x
0 ,x

⋆ − ˆ̂x1⟩+λ⟨∆y
0 ,(1+θ)(ŷ1 − y⋆)− θ

ρ (
ˆ̂y2 − y⋆)⟩+3λQ(∥∆x

0∥
2+∥∆y

0∥
2)
]

≤ E
[
e4λ⟨∆

x
0 ,x

⋆ − ˆ
x̂1⟩
] 1

4

E
[
e4λ⟨∆

y
0 ,(1+θ)(ŷ1 − y⋆)− θ

ρ (
ˆ
ŷ2 − y⋆)⟩

] 1
4

E
[
e12λQ∥∆x

0∥
2
] 1

4 E
[
e12λQ∥∆y

0∥
2
] 1

4

≤ e32λ
2
(
∥ˆ̂x1 − x⋆∥2δ2x+2(1+θ)2∥(ŷ1 − y⋆)∥2δ2y+

2θ2

ρ2
∥ˆ̂y2 − y⋆∥2δ2y

)
e24λQ(δ

2
x+δ

2
y)

≤ e24Q(δ
2
x+δ

2
y)λ · e

32(2−ρ)
(
∥A1∥2δ2x+(∥A2∥2+∥A3∥2)δ2y

)
E0λ

2

,

where in the last inequality we used Lemma 4.7 and the relations x0 = x−1, and y0 = y−1. Hence, we can use
Proposition4.2 with

σ2
T =

32

ρ

(
∥A1∥2δ2x +

(
∥A2∥2+∥A3∥2

)
δ2y
)
, σ2

R = 24Q(δ2x + δ2y)

α = 24Q
(
δ2x + δ2y

)
, ᾱ = 96Qmax{δ2x, δ2y},

β = 32
(2− ρ)
ρ

(
∥A1∥2δ2x +

(
∥A2∥2+∥A3∥2

)
δ2y

)
Eτ,σ,

(4.23)

where we used the fact that Eτ,σ ≥ ρE0 while setting the value for β. When we invoke Proposition4.2, we set λ = γ̃
within (4.4) for some particular γ̃ > 0 such that γ̃ ≤ γ as required by the proposition. Thus, for any p ∈ (0, 1) and
n ≥ 0, the following inequality giving a bound on Vn,

Vn ≤
(
1 + ρ

2

)n (
Eτ,σ + 24Q(δ2x + δ2y)

)
+

(
1 + ρ

2

)2n

γ̃
32(2− ρ)

ρ

(
∥A1∥2δ2x +

(
∥A2∥2+∥A3∥2

)
δ2y

)
Eτ,σ

+
1

1− ρ
(
48Q(δ2x + δ2y)

)
+

1

γ̃
log

(
1

1− p

)
holds with probability at least p, where

γ̃ ≜
1− ρ

max{96Q, 128∥A∥2F /ρ}δ̄2
≤ γ ≜

1− ρ
max{ᾱ, 2σ2

R, 4σ
2
T }
. (4.24)

and δ̄ ≜ {δx, δy}. We can further simplify the above bound as follows:

Vn ≤
(
1 + ρ

2

)n (
Eτ,σ + 48Qδ̄2

)
+

(
1 + ρ

2

)2n
(1− ρ)(2− ρ)

4
Eτ,σ

+
1

1− ρ
96Qδ̄2

(
1 + max

{
1,

4

3ρ

∥A∥2F
Q

}
log

(
1

1− p

)) (4.25)

Finally, using the crude bound
(

1+ρ
2

)n
(1− ρ)(2− ρ)/4 ≤ 1/4 for n ≥ 1, the desired result with Ξ

(1)
τ,σ,θ = 48Q and

Ξ
(2)
τ,σ,θ = max

{
1, 4

3ρ
∥A∥2

F

Q

}
follows from (4.20).
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4.3 Intermediate Results

Almost sure domination of SAPD iterates. Our analysis starts by leveraging an almost sure upper bound on the
sequence of iterates’ distances to the solution (x⋆, y⋆). This bound, which appears in substance in [38], will serve as
the foundation of our risk-averse analysis.
Proposition 4.3. Let (xn, yn) be the sequence generated by SAPD, intialized at an arbitrary tuple (x−1, y−1) =
(x0, y0) ∈ X ×Y . Provided that there exists τ, σ > 0, and θ ≥ 0 that satisfy (3.1) for some ρ ∈ (0, 1) and α ∈ [0, σ−1),
we have

En ≤ ρn−1Eτ,σ +

n−1∑
k=0

ρn−1−k (⟨∆x
k, x

⋆−xk+1⟩+ ⟨(1 + θ)∆y
k − θ∆

y
k−1, yk+1 − y⋆⟩

)
, (4.26)

where En≜ 1
2ρτ ∥xn − x⋆∥2+ 1−ασ

2ρσ ∥yn − y⋆∥2, and Eτ,σ ≜ 1
2τ ∥x0 − x⋆∥2+ 1

2σ∥y0 − y⋆∥2.

Although this bound is already present in substance in [38], it does not appear explicitly. For completeness, we provide
below a minimal proof based on various arguments developed in [38].

Proof. Letting x̄n≜Kn(ρ)
−1
∑n−1
k=0 ρ

−kxk+1, and ȳn≜Kn(ρ)
−1
∑n−1
k=0 ρ

−kyk+1, with Kn(ρ)≜
∑n−1
k=0ρ

−k =
1

ρn−1 · 1−ρ
n

1−ρ , by Jensen’s inequality , we have for all ρ ∈ (0, 1],

Kn(ρ) (L (x̄n, y⋆)− L (x⋆, ȳn)) ≤
n−1∑
k=0

ρ−k (L (xk+1, y
⋆)− L (x⋆, yk+1)) .

Hence, in view of Lemma 5.1,

Kn(ρ) (L (x̄n, y⋆)− L (x⋆, ȳn))

≤
n−1∑
k=0

ρ−k
(
− ⟨qk+1, yk+1 − y⋆⟩+ θ ⟨qk, yk − y⋆⟩+ Λk − Σk+1 + Γk+1

+ ⟨∆x
k, x

⋆−xk+1⟩+ ⟨(1 + θ)∆y
k − θ∆

y
k−1, yk+1 − y⋆⟩

)
,

(4.27)

where qk ≜∇y Φ(xk, yk)−∇y Φ(xk−1, yk−1). By Cauchy-Schwarz inequality, observe that

|⟨qk+1, yk+1 − y⋆⟩| ≤ Sk+1 ≜Lyx ∥xk+1 − xk∥ ∥yk+1 − y∥+ Lyy ∥yk+1 − yk∥ ∥yk+1 − y⋆∥ , ∀k ≥ 0.

Hence, using q0 = 0 due to our initialization of (x−1, y−1) = (x0, y0), we have

n−1∑
k=0

ρ−k (−⟨qk+1, yk+1 − y⋆⟩+ θ ⟨qk, yk − y⋆⟩) =
n−2∑
k=0

ρ−k
(
θ

ρ
− 1

)
⟨qk+1, yk+1 − y⋆⟩ − ρ−n+1 ⟨qn, yn − y⋆⟩

≤
n−2∑
k=0

ρ−k
∣∣∣∣1− θ

ρ

∣∣∣∣Sk+1 + ρ−n+1Sn≤
n−1∑
k=0

ρ−k
∣∣∣∣1− θ

ρ

∣∣∣∣Sk+1 + ρ−n+1 θ

ρ
Sn

From (4.27), it follows that

Kn(ρ) (L (x̄n, y⋆)− L (x⋆, ȳn))+ρ−n+1En ≤ Un+
n−1∑
k=0

ρ−k
(
⟨∆x

k, x
⋆−xk+1⟩+⟨(1+θ)∆y

k−θ∆
y
k−1, yk+1−y⋆⟩

)
,

where

Un ≜
n−1∑
k=0

ρ−k
(
Γk+1 + Λk − Σk+1 +

∣∣∣∣1− θ

ρ

∣∣∣∣Sk+1

)
− ρ−n+1

(
−En −

θ

ρ
Sn

)
.

Now, observe that for all n ≥ 1,

Un =
1

2

n−1∑
k=0

ρ−k
(
ξ⊤k Aξk − ξ⊤k+1Bξk+1

)
− ρ−n+1

(
−En −

θ

ρ
Sn

)

=
1

2
ξ⊤0 Aξ0 −

1

2

n−1∑
k=1

ρ−k+1

[
ξ⊤k

(
B − 1

ρ
A

)
ξk

]
− ρ−n+1

(
1

2
ξ⊤nBξn − En −

θ

ρ
Sn

)
,
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where A,B ∈ R5×5 and ξk ∈ R5 are defined for k ≥ 0 as

A ≜


1
τ 0 0 0 0
0 1

σ 0 0 0
0 0 0 0 θLyx
0 0 0 0 θLyy
0 0 θLyx θLyy −α

 , ξk ≜


∥xk − x⋆∥
∥yk − y⋆∥
∥xk − xk−1∥
∥yk − yk−1∥
∥yk+1 − yk∥



B ≜



1
τ + µx 0 0 0 0

0 1
σ + µy −

∣∣∣1− θ
ρ

∣∣∣Lyx −
∣∣∣1− θ

ρ

∣∣∣Lyy 0

0 −
∣∣∣1− θ

ρ

∣∣∣Lyx 1
τ − Lxx 0 0

0 −
∣∣∣1− θ

ρ

∣∣∣Lyy 0 1
σ − α 0

0 0 0 0 0


By [38, Lemma 5], the matrix inequality condition (3.1) is equivalent to having B − ρ−1A ⪰ 0. In this case, we almost
surely have

Un ≤
1

2
ξ⊤0 Aξ0 − ρ−n+1

(
1

2
ξ⊤nBξn − En −

θ

ρ
Sn

)
. (4.28)

Finally, denoting

G′′ ≜


1
σ

(
1− 1

ρ

)
+ µy +

α
ρ

(
−
∣∣∣1− θ

ρ

∣∣∣− θ
ρ

)
Lyx

(
−
∣∣∣1− θ

ρ

∣∣∣− θ
ρ

)
Lyy(

−
∣∣∣1− θ

ρ

∣∣∣− θ
ρ

)
Lyx

1
τ − Lxx 0(

−
∣∣∣1− θ

ρ

∣∣∣− θ
ρ

)
Lyy 0 1

σ − α

 ,

we have G′′ ⪰ 0 in view of [38, Lemma 6]; thus,

1

2
ξ⊤nBξn −

θ

ρ
Sn

=
1

2ρτ
∥xn − x∥2 +

1

2

(
1

ρσ
− α

ρ

)
∥yn − y∥2 +

1

2
ξ⊤n

 1
τ

(
1− 1

ρ

)
+ µx 01×3 0

03×1 G′′ 03×1

0 01×3 0

 ξn

≥ 1

2ρτ
∥xn − x∥2 +

1

2ρσ
(1− ασ) ∥yn − y∥2 = En

Therefore, using (4.28), we can conclude that Un ≤ 1
2ξ

⊤
0 Aξ0≤ 1

2τ ∥x0 − x⋆∥2+ 1
2σ∥y0 − y⋆∥2= Eτ,σ. Finally, by

non-negativity of L (x̄n, y⋆)− L (x⋆, ȳn), we obtain (4.26).

Lemma 4.4. For any n ≥ 0, Check if it holds for n = 0.

∥ˆ̂yn+1− y⋆∥≤ ∥A0∥(En + (1− ρ)En−1)
1/2 +

1

1 + σµy

(
(1 + σ(1 + θ) Lyy) ∥yn − ŷn∥+σ(1 + θ) Lyx∥xn − ˆ̂xn∥

)
where A0 as defined in Table 2.

Proof. In view of 4.30 and Lemma B.2, we have

∥ˆ̂yn+1− y⋆∥≤ 1

1 + σµy

∥∥∥ŷn+σ(1 + θ)∇y Φ(ˆ̂xn, ŷn)− σθ∇y Φ(xn−1, yn−1)− y⋆−σ∇y Φ(x
⋆, y⋆)

∥∥∥
By the triangular inequality and smoothness assumptions on∇y Φ, we deduce

∥ˆ̂yn+1− y⋆∥ ≤ 1

1 + σµy

(
(1 + σ(1 + θ) Lyy)∥ŷn− y⋆∥+σ(1 + θ) Lyx∥ˆ̂xn− x⋆∥+σθ Lyx∥xn−1 − x⋆∥+σθ Lyy∥yn−1 − y⋆∥

)
≤ 1

1 + σµy
((1 + σ(1 + θ) Lyy)∥yn − y⋆∥+σ(1 + θ) Lyx∥xn − x⋆∥+σθ Lyx∥xn−1 − x⋆∥+σθ Lyy∥yn−1 − y⋆∥)

+
1

1 + σµy

(
(1 + σ(1 + θ) Lyy)∥ŷn−yn∥+σ(1 + θ) Lyx∥ˆ̂xn−xn∥

)
The statement finally follows from Cauchy-Schwarz inequality.
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Lemma 4.5 (See Lemma 3 - [38]). For any n ∈ N, we have

∥x̂n+1−xn+1∥ ≤
τ

1 + τµx
∥∆x

n∥

∥ŷn+1−yn+1∥ ≤
σ

1 + σµy

(
(1 + θ)∥∆y

n∥+θ∥∆
y
n−1∥

)
∥ˆ̂xn+1−xn+1∥ ≤

τ

1 + τµx

(
∥∆x

n∥+Lxy
σ

1 + σµy

(
(1 + θ)∥∆y

n∥+θ∥∆
y
n−1∥

))
∥ˆ̂yn+1−yn+1∥ ≤

σ

1 + σµy

(
τ(1 + θ) Lyx

1 + τµx
∥∆x

n−1∥

+ (1 + θ)∥∆y
n∥

+

(
θ + (1 + θ)

(
1 + σ(1 + θ) Lyy

1 + σµy
+

τσ(1 + θ) Lyx Lxy

(1 + τµx)(1 + σµy)

))
∥∆y

n−1∥

+ θ

(
1 + σ(1 + θ) Lyy

1 + σµy
+

τσ(1 + θ) Lyx Lxy

(1 + τµx)(1 + σµy)

)
∥∆y

n−2∥
)

The following proposition plays a key role for the introduction of the scalar process Vn (see Equation (4.19)) in the
proof of Theorem 3.1.

Proposition 4.6. For any n ∈ N,is this bound defined for n = 0? Otherwise, we should say for n ≥ 1.

(ρ− 1)P (1)
n − P (2)

n + ρ (ρ− 1)P
(2)
n−1 + ρQn

≤ ρ

2
(En+1 + (1− ρ)En) +Q

(
∥∆x

n∥2+∥∆y
n∥2+ρ

(
∥∆x

n−1∥2+∥∆
y
n−1∥2

)
+ ρ2∥∆y

n−2∥2
)

and for any k ≥ 0,

Qk ≤ Q
(
∥∆x

k∥2+∥∆
y
k∥

2+ρ
(
∥∆x

k−1∥2+∥∆
y
k−1∥

2
)
+ ρ2∥∆y

k−2∥
2
)
,

where ∆x
−1 ≜0 and ∆y

−1 = ∆y
−2 ≜0. and Q is given explicitly in Table 2.

Proof. By Young’s inequality, we first note that that for any γx, γy > 0,

(ρ− 1)P (1)
n + ρ⟨∆x

n,
ˆ̂xn+1−xn+1⟩+ ρ(1 + θ) ⟨∆y

n, yn+1 − ŷn+1⟩

= (ρ− 1)
(
⟨∆x

n, x
⋆− ˆ̂xn+1⟩+ (1 + θ)⟨∆y

n, ŷn+1− y⋆⟩
)

+ ρ⟨∆x
n,

ˆ̂xn+1−xn+1⟩+ ρ(1 + θ) ⟨∆y
n, yn+1 − ŷn+1⟩

= (ρ− 1)
(
⟨∆x

n, x
⋆−xn+1⟩+ (1 + θ)⟨∆y

n, yn+1 − y⋆⟩
)

+ ⟨∆x
n,

ˆ̂xn+1−xn+1⟩+ (1 + θ) ⟨∆y
n, yn+1 − ŷn+1⟩

≤ γx(1− ρ)
2

∥∆x
n∥2+

(1− ρ)
2γx

∥x⋆−xn+1∥2+
(1− ρ)γy(1 + θ)

2
∥∆y

n∥2+
(1− ρ)(1 + θ)

2γy
∥yn+1 − y⋆∥2

+ ⟨∆x
n,

ˆ̂xn+1−xn+1⟩+ (1 + θ) ⟨∆y
n, yn+1 − ŷn+1⟩.

Setting γx≜ 8τ(1− ρ) and γy ≜ 8σ(1−ρ)(1+θ)1−ασ , we ensure that

(ρ− 1)P (1)
n + ρ⟨∆x

n,
ˆ̂xn+1−xn+1⟩+ (1 + θ)ρ ⟨∆y

n, yn+1 − ŷn+1⟩

≤ ρ

8
En+1 + 4τ(1− ρ)2∥∆x

n∥2+
4σ(1 + θ)2(1− ρ)2

(1− ασ)
∥∆y

n∥2

+ ⟨∆x
n,

ˆ̂xn+1−xn+1⟩+ (1 + θ) ⟨∆y
n, yn+1 − ŷn+1⟩.

Similarly, we have

ρ (ρ− 1)P
(2)
n−1 − θρ⟨∆

y
n−1, yn+1 − ˆ̂yn+1⟩ ≤ ρ

(
(ρ− 1)

θ

ρ
θ⟨∆y

n−2, y
⋆− ˆ̂yn⟩

)
− θρ⟨∆y

n−1, yn+1 − ˆ̂yn+1⟩

18



A PREPRINT - MARCH 15, 2023

Hence,

ρ (ρ− 1)P
(2)
n−1 − θρ⟨∆

y
n−1, yn+1 − ˆ̂yn+1⟩ ≤

ρ

8
En+1 +

4σθ2(1− ρ)2

1− ασ
∥∆y

n−1∥2−θ⟨∆
y
n−1, yn+1 − ˆ̂yn+1⟩.

Finally, observe that for any γ > 0,

−P (2)
n ≤ γ

2
∥∆y

n∥2+
1

2γ
∥ˆ̂yn+2− y⋆∥2

≤ γ

2
∥∆y

n∥2+
1

2γ

(
3∥A0∥2(En+1 + (1− ρ)En) + 3

(1 + σ(1 + θ) Lyy

1 + σµy

)2
∥ŷn+1−yn+1∥2

+ 3
(σ(1 + θ) Lyx

1 + σµy

)2
∥ˆ̂xn+1−xn+1∥2

)
,

where the last inequality follows from Lemma 4.4 and Lemma B.1. Setting γ≜ 6∥A0∥2

ρ ensures that

−P (2)
n ≤ ρ

4
(En+1 + (1− ρ)En) +

3∥A0∥2

ρ
∥∆y

n∥2 +
ρ

4∥A0∥2

(
1 + σ(1 + θ) Lyy

1 + σµy

)2

∥ŷn+1−yn+1∥2

+
ρ

4∥A0∥2

(
σ(1 + θ) Lyx

1 + σµy

)2

∥ˆ̂xn+1−xn+1∥2.

Hence, combining all the bounds we obtained above, we getThis bound is correct; though, it uses a loose bound
ρ
8En+1 ≤ ρ

4 (En+1 + (1− ρ)En).

(ρ− 1)P (1)
n − P (2)

n + ρ (ρ− 1)P
(2)
n−1 + ρQn

≤ ρ

2
(En+1 + (1− ρ)En) + ⟨∆x

n,
ˆ̂xn+1−xn+1⟩+ (1 + θ) ⟨∆y

n, yn+1 − ŷn+1⟩ − θ⟨∆
y
n−1, yn+1 − ˆ̂yn+1⟩

+ 4τ(1− ρ)2∥∆x
n∥2+

4σ(1 + θ)2(1− ρ)2

1− ασ
∥∆y

n∥2+
4σθ2(1− ρ)2

1− ασ
∥∆y

n−1∥2+
3∥A0∥2

ρ
∥∆y

n∥2

+
ρ

4∥A0∥2

(
1 + σ(1 + θ) Lyy

1 + σµy

)2

∥ŷn+1−yn+1∥2+
ρ

4∥A0∥2

(
σ(1 + θ) Lyx

1 + σµy

)2

∥ˆ̂xn+1−xn+1∥2.

Let us now introduce ζk ≜
[
∥∆x

k∥, ρ1/2∥∆x
k−1∥, ∥∆

y
k∥, ρ1/2∥∆

y
k−1∥, ρ∥∆

y
k−2∥

]⊤
∈ R5 for k ≥ 0; then, the

following bounds follow from Lemma 4.5 and Cauchy-Schwartz inequality:(
⟨∆x

n,
ˆ̂xn+1−xn+1⟩+ (1 + θ) ⟨∆y

n, yn+1 − ŷn+1⟩ − θ⟨∆
y
n−1, yn+1 − ˆ̂yn+1⟩

)
≤ ζ⊤n B0ζn

ρ

4∥A0∥2

((
1 + σ(1 + θ) Lyy

1 + σµy

)2

∥ŷn+1−yn+1∥2+
(
σ(1 + θ) Lyx

1 + σµy

)2

∥ˆ̂xn+1−xn+1∥2
)
≤ ζ⊤n B1ζn

4τ(1− ρ)2∥∆x
n∥2+

4σ(1 + θ)2(1− ρ)2

1− ασ
∥∆y

n∥2+
4σθ2(1− ρ)2

1− ασ
∥∆y

n−1∥2+
3∥A0∥2

ρ
∥∆y

n∥2 ≤ ζ⊤n B2ζn,

where B0, B1, B2 ∈ R5×5 are defined in Table 2. Therefore,

(ρ− 1)P (1)
n − P (2)

n + ρ (ρ− 1)P
(2)
n−1 + ρQn ≤

ρ

2
(En+1 + (1− ρ)En) + ζ⊤n (B0 +B1 +B2)ζn

≤ ρ

2
(En+1 + (1− ρ)En) + ∥B0 +B1 +B2∥F ∥ζn∥2.

Notice finally that ρ ≤ 1 and B0, B1 and B2 all have non-negative coefficients, so that for all k ≥ 0

Qk ≤ ζ⊤k B0ζk ≤ ∥B0 +B1 +B2∥F ∥ζk∥2.

The following lemma will be used to verify the assumptions of Proposition 4.1 when analyzing SAPD.
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Lemma 4.7. For any k ∈ N and for ρ ∈ (0, 1), we have almost surely:

 ∥ˆ̂xk+1− x⋆∥√
2(1 + θ)∥ŷk+1− y⋆∥√

2 θρ∥ˆ̂yk+2− y⋆∥

 ≤ A


1√
2ρτ
∥xk − x⋆∥

√
1−ασ√
2ρσ
∥yk − y⋆∥

√
1−ρ√
2ρτ
∥xk−1 − x⋆∥√

(1−ρ)(1−ασ)√
2ρσ

∥yk−1 − y⋆∥

 , (4.29)

where the inequality is taken element-wise and A is defined in Table 2.

Proof. Let k ∈ N be fixed. Fist note that since (x⋆, y⋆) is solution of (1.1), x⋆ and y⋆ are respective fixed points of two
deterministic proximal gradient steps:

x⋆ = proxτf (x
⋆−τ ∇x Φ(x

⋆, y⋆)) , y⋆ = proxσg (y
⋆+σ∇y Φ(x

⋆, y⋆)) . (4.30)

Thus, using Lemma B.2 and Lemma B.1, we obtain

∥ŷk+1− y⋆∥ ≤ 1

1 + σµy
∥yk + σ(1 + θ)∇y Φ(xk, yk)− σθ∇y Φ(xk−1, yk−1)− y⋆−σ∇y Φ(x

⋆, y⋆)∥

≤ 1

1 + σµy

(
∥yk − y⋆∥+σ(1 + θ)∥∇y Φ(xk, yk)−∇y Φ(x

⋆, y⋆)∥+θσ∥∇y Φ(xk−1, yk−1)−∇y Φ(x
⋆, y⋆)∥

)
≤ 1

1 + σµy

(
σ(1 + θ) Lyx∥xk − x⋆∥+ (1 + σ(1 + θ) Lyy)∥yk − y⋆∥

+σθ Lyx∥xk−1 − x⋆∥+ σθ Lyy∥yk−1 − y⋆∥
)
,

where the third inequality follows from the smoothness assumptions on∇x Φ and∇y Φ. Through analogous algebraic
computations, we also obtain

∥ˆ̂xk+1− x⋆∥ ≤ 1

1 + τµx

(
(1 + τ Lxx)∥xk − x⋆∥+τ Lxy∥ŷk+1− y⋆∥

)
≤ 1

1 + τµx

((
1 + τ Lxx +

τσ(1 + θ) Lyx Lxy

1 + σµy

)
∥xk − x⋆∥ + τσθ Lxy Lyx

1 + σµy
∥xk−1 − x⋆∥

+
τ Lxy(1 + σ(1 + θ) Lyy)

1 + σµy
∥yk − y⋆∥+ τσθ Lxy Lyy

1 + σµy
∥yk−1 − y⋆∥

)
,

from which we deduce the following bound:

∥ˆ̂yk+2− y⋆∥ ≤ 1

1 + σµy

(
∥ŷk+1− y⋆∥+ σ(1 + θ) Lyx∥ˆ̂xk+1− x⋆∥+σ(1 + θ) Lyy∥ŷk+1− y⋆∥

+ σθ Lyx∥xk − x⋆∥+σθ Lyy∥yk − y⋆∥
)

≤ 1

1 + σµy

((
(1 + σ(1 + θ) Lyy)

σ(1 + θ) Lyx

1 + σµy
+ σ(1 + θ) Lyx

(
1 + τ Lxx +

τσ(1+θ) Lyx Lxy

1+σµy

)
1 + τµx

+ σθ Lyx

)
∥xk − x⋆∥

+

(
(1 + σ(1 + θ) Lyy)

2

1 + σµy
+ σ(1 + θ) Lyx

τ Lxy(1 + σ(1 + θ) Lyy)

(1 + σµy)(1 + τµx)
+ σθ Lyy

)
∥yk − y⋆∥

+

(
(1 + σ(1 + θ) Lyy)

θσ Lyx

(1 + σµy)
+ σ(1 + θ)

τσθ Lxy Lyx
2

(1 + σµy)(1 + τµx)

)
∥xk−1 − x⋆∥

+

(
(1 + σ(1 + θ) Lyy)σθ Lyy

1 + σµy
+ σ(1 + θ)

τσθ Lxy Lyx Lyy

(1 + σµy)(1 + τµx)

)
∥yk−1 − y⋆∥

)
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5 Additional Lemmas

In relationship to high-probability convergence results. We first recall the following descent Lemma, used to derive
the almost sure bound 4.3.

Lemma 5.1 (See [38]Lemma 1). The iterates (xk, yk) of SAPD satisfy for all k ≥ 0

L (xk+1, y
⋆)− L (x⋆, yk+1) ≤− ⟨qk+1, yk+1 − y⋆⟩+ θ ⟨qk, yk − y⋆⟩+ Λk(x

⋆, y⋆)− Σk+1(x
⋆, y⋆) + Γk+1

+ ⟨∆x
k, x

⋆−xk+1⟩+ ⟨(1 + θ)∆y
k − θ∆

y
k−1, yk+1 − y⋆⟩

where
qk ≜∇y Φ (xk, yk)−∇y Φ (xk−1, yk−1)

Λk ≜
1

2τ
∥x⋆−xk∥2 +

1

2σ
∥y⋆−yk∥2

Σk+1 ≜

(
1

2τ
+
µx
2

)
∥x⋆−xk+1∥2 +

(
1

2σ
+
µy
2

)
∥y⋆−yk+1∥2

Γk+1 ≜

(
Lxx
2
− 1

2τ

)
∥xk+1 − xk∥2 −

1

2σ
∥yk+1 − yk∥2 + θLyx ∥xk − xk−1∥ ∥yk+1 − yk∥

+ θLyy ∥yk − yk−1∥ ∥yk+1 − yk∥ .

In relationship to the CVaR upperbound.
Lemma 5.2. For any non-negative random variable U : Ω→ R+, we have for all p ∈ [0, 1):

Qp(U
2)

1
2= Qp(U)

CVaRp(U
2)

1
2 ≥ CVaRp(U)

Proof. We first show that Qp(X2) = Qp(X)2 for any p ∈ (0, 1). Indeed, for any 0 ≤ t < Qp(U)2, by non-negativity
of U , we have:

P[U2 ≤ t] = P[U ≤
√
t] < p

by definition of Qp(U). This implies t < Qp(U
2); thus, Qp(U)2 ≤ Qp(U2). Conversely, we note that

p ≤ P[U ≤ Qp(U)] = P[U2 ≤ Qp(U)2],

which implies Qp(U)2 ≥ Qp(U2); hence, Qp(X2) = Qp(X)2. Using this result, we get

CVaRp(U
2) =

(
1

1− p

∫ 1

p′=p

Qp′(U
2)dp′

)
= Ep′∼U [p,1][Qp′(U)2]

≥ Ep′∼U [p,1][Qp′(U)]2 = CVaRp(U)2,

where U [p, 1] denotes the uniform distribution on [p, 1], and the last inequality follows from the identity E[X2] =
E[X]2 + E[(X − E[X])2].

In relationship to the quadratic case analysis.
Lemma 5.3. Let ν1, ν2, be the two complex conjugate eigenvalues ofAi, as specified in Lemma C.2. Then, the following
relations are satisfied

ν1ν2 = θ2 − θ(1− θ)2κ2

ν1 + ν2 = 2θ − (1− θ)2(1 + θ)κ2

ν21 + ν22 = 2θ2 − 2θ(1− θ)2(1 + 2θ)κ2 + (1− θ)4(1 + θ)2κ4

v31 + v32 =
(
2θ − (1− θ)2(1 + θ)κ2

) (
θ2 − θ(1− θ)2(1 + 4θ)κ2 + (1− θ)4(1 + θ)2κ4

)
v41 + v42 = 2θ4 − (1− θ)2κ2θ3(4 + 16θ) + (1− θ)4κ4θ2

(
6 + 24θ + 20θ2

)
− (1− θ)6κ64θ

(
1 + 4θ + 5θ2 + 2θ3

)
+ (1− θ)8κ8(1 + θ)4
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6 Omitted Proofs

We start with elementary proofs of the lemmas 2.1 and 2.2, following standard arguments that can be found in textbooks
such as [33, 29].

A Symbols and constants used in the paper

The convergence analysis of SAPD relies on a series of convex inequalities that we wrote in matrix form for compactness.
The matrix of coefficients introduced in Proposition 4.6, Lemma4.7 and Lemma 4.4 are made explicit in Table 2.

A0 ≜
1

1 + σµy


√
2ρτσ(1 + θ) Lyx√

2ρσ√
1−ασ (1 + σ(1 + θ) Lyy)√

2ρτ√
1−ρ · σθ Lyx√
2ρσ√

(1−ασ)(1−ρ)
· σθ Lyy

 , Â1 ≜


(
1 + τ Lxx +

τσ(1+θ) Lyx Lxy

1+σµy

)
τ Lxy(1+σ(1+θ) Lyy)

1+σµy

σ√
1−ρ

τθ Lxy Lyx

(1+σµy)
σ√
1−ρ

τθ Lxy Lyy

(1+σµy)

 , Â2 ≜


σ(1 + θ) Lyx

1 + σ(1 + θ) Lyy
σ√
1−ρθ Lyx
σ√
1−ρθ Lyy



Â3 ≜


Cσ,θσ(1 + θ)(1 + τµx) Lyx +σ(1 + θ) Lyx

(
(1 + τ Lxx )(1 + σµy) + τσ(1 + θ) Lyx Lxy

)
+ σθ Lyx(1 + τµx)(1 + σµy)

(1 + τµx)C
2
σ,θ + σ(1 + θ) Lyx τ Lxy Cσ,θ + σθ Lyy(1 + τµx)(1 + σµy)
σ√
1−ρ

(
Cσ,θθ Lyx(1 + τµx) + (1 + θ)τσθ Lxy Lyx

2
)

σ√
1−ρ

(
Cσ,θθ Lyy(1 + τµx) + (1 + θ)τσθ Lxy Lyx Lyy

)

 .

A≜

A⊤
1

A⊤
2

A⊤
3

≜


1

1+τµx
Â⊤

1√
2(1+θ)
1+σµy

Â⊤
2√

2θρ−1

(1+σµy)2(1+τµx)
Â⊤

3

Diag


√
2ρτ√

2ρσ/(1− ασ)√
2ρτ√

2ρσ/(1− ασ)

 .

B0≜



τ
1+τµx

0
τσ(1+θ) Lxy

(1+τµx)(1+σµy)
τσθ Lxy√

ρ(1+τµx)(1+σµy)
0

0 0 0
στθ(1+θ) Lyx

ρ(1+σµy)(1+τµx)
0

0 0 σ(1+θ)2

1+σµy

2θσ(1+θ)√
ρ(1+σµy)

0

0 0 0 σθ
ρ(1+σµy)

(θ + (1 + θ)Sτ,σ,θ)
σθ2

ρ3/2(1+σµy)
Sτ,σ,θ

0 0 0 0 0



B1 ≜
ρ

4∥A0∥2
Diag



3τ2

(1+τµx)2

(
σ(1+θ) Lyx

1+σµy

)2
0

2σ2(1+θ)2

(1+σµy)2

(
1+σ(1+θ) Lyy

1+σµy

)2
+

3 τ2σ2(1+θ)2 Lxy
2

(1+τµx)2(1+σµy)2

(
σ(1+θ) Lyx

1+σµy

)2
2σ2θ2

ρ(1+σµy)2

(
1+σ(1+θ) Lyy

1+σµy

)2
+

3 τ2σ2θ2 Lxy
2

ρ(1+τµx)2(1+σµy)2

(
σ(1+θ) Lyx

1+σµy

)2
0


, B2 ≜Diag


4τ(1− ρ)2

0
4σ(1+θ)2(1−ρ)2

(1−ασ) + 3∥A0∥2

ρ
4σθ2(1−ρ)2
ρ(1−ασ)

0


Q≜∥B0 +B1 +B2∥F , Sτ,σ,θ ≜

1+σ(1+θ) Lyy

1+σµy
+

τσ(1+θ) Lyx Lxy

(1+τµx)(1+σµy)
, Cσ,θ ≜ 1 + σ(1 + θ) Lyy

Table 2: Summary of the constants used throughout the analysis.

Furthermore, we provide the expressions of the same matrices under the (CP) parameterization 3.2 in Table 3

B Basic inequalities

Throughout this paper, we’ll make extensive use of the following inequalities, without necessarily referring to them. We
start with a simple convex inequality known as Cauchy-Schwartz’s inequality when M = 2.
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A1 =



√
1− θ θ

√
2
µx

(
1 + (1−θ)Lxx

θµx
+

(1−θ)2(1+θ)LxyLyx

θµxµy

)
(1− θ)3/2 2θ√

µy

(
1+2

(1−θ)
θ

Lyy
µy

) Lxy

µx

(
1 + (1−θ)(1+θ)

θ
Lyy

µx

)
(1− θ)2θ

√
2
µx

LxyLyx

µxµy

(1− θ)2 2θ√
µy

(
1+2

(1−θ)

θ2
Lyy
µy

) LxyLyy

µxµy


, A2 =



(1− θ)3/2 2(1+θ)2Lyx√
µxµy√

1− θ 2
√
2θ(1+θ)√

µy

(
1+2

(1−θ)

θ1/2

Lyy
µy

) (1 + (1−θ)+(1+θ)Lyx

θµy

)
(1− θ) 2θ(1+θ)Lyx√

µxµy

(1− θ) 2
√
2θ(1+θ)Lyy

µy

√
µy

(
1+2

(1−θ)

θ1/2

Lyy
µy

)



A3 =



(1− θ)3/2 2
√
2θ2√

µxµy

((
1 + (1−θ)(1+θ)

θµy
Lyy

)
(1 + θ)θLyx + (1 + θ)Lyx

(
θ2 + (1−θ)2

θ2µxµy
(1 + θ)LyxLyy

)
+ θ3Lyx

)
√
1− θ 2

√
2θ3√

µy

(
1+2

(1−θ)

θ1/2

lyy
µy

)
[
θ
(
1 + (1−θ)(1+θ)

θµy
Lyy

)2
+ (1−θ)2

θ2

(
1 + (1−θ)(1+θ)

θµy
Lyy

)
LyxLxy

µxµy
+ (1− θ)θ2 Lyy

µy

]
(1− θ) 2θ2√

µxµy

[(
1 + (1−θ)(1+θ)

θµy
Lyy

)
θ2Lyx + (1 + θ) (1−θ)

2

θ

LxyL
2
yx

µxµy

]
(1− θ) 2

√
2θ2

µy

√
µy

(
1+2

(1−θ)

θ′2
cyy
µy

) [(1 + (1−θ)(1+θ)
θµy

Lyy

)
θ2Lyy + (1 + θ) (1−θ)

2

θ
LxyLyxLyy

µxµy

]



B0 ≜



(1−θ)
µx

0 (1− θ)2 (1+θ)Lxy

µxµy
(1− θ)2

√
θLxy

µxµy
0

0 0 0 (1− θ)2 (1+θ)Lyx

µxµy
0

0 0 0 (1− θ) 2
√
θ(1+θ)
µy

0

0 0 0 (1−θ)
µy

(
θ + (1 + θ)S̃θ

)
(1− θ)

√
θS̃θ

0 0 0 0 0



B1 ≜
θ

4∥A0∥2F
Diag


3(1−θ)4(1+θ)2l2yx

µ2
xµ2

y

0

(1−θ)22 (1+θ)2θ2

µ2
y

(
1+(1−θ2)Lyy

θµy

)2
+(1−θ)6

3(1+θ)4L2
xyL2

yx

µ2
xµ4

y

2(1−θ)2θ3

µ2
y

·
(
1+(1−θ2)Lyy

θµy

)2
+(1−θ)6

3θ(1+θ)2L2
xyL2

yx

µ2
xµ4

y

0

 , B2 ≜Diag



4(1−θ)3
θµx

0
4(1+θ)2(1−θ)3

θµy( 1
2+

√
θ Lyy σ)

+ 3
θ ∥A0∥2

4
√
θ(1−θ)2
Lyy

0


S̃θ ≜ θ + (1− θ)(1 + θ)

Lyy

µy
+ (1− θ)2(1 + θ)

LyxLxy

µxµy

Table 3: Simplifications of the matrices Ais and Bis from Table 2 under the (CP) parameterization 3.2.

Lemma B.1. For any sequence x1, . . . , xM ∈ Rd, M ≥ 1,

∥x1 + · · ·+ xM∥2≤M
M∑
i=1

∥xi∥2. (B.1)

We do not provide a proof of the following statement which may be seen as a direct extension of e.g. [2, Theorem
6.42].We have this result in SAPD paper, we can directly cite it.
Lemma B.2. For any µ-strongly convex function φ : Rd → R∪{+∞}, for any x, y ∈ Rd,

∥proxφ(x)− proxφ(y)∥≤
1

1 + µ
∥x− y∥. (B.2)

C Analytical solution for quadratics

In this section, we study the behaviour of SAPD on quadratic problems subjects to Gaussian isotropic noise. That is,
given a symmetric matrix K ∈ Rd, and two regularization parameters µx, µy , we aim at solving

min
x∈Rd

max
y∈Rd

µx
2
∥x∥2+⟨Kx, y⟩ − µy

2
∥y∥2, (C.1)

while having access only to noisy estimates ∇̃x Φ, ∇̃y Φ of the partial gradients of Φ : x, y 7→ ⟨Kx, y⟩. Precisely, we
assume

∇̃x Φ(x, y) = K⊤y + ωxk , ∇̃y Φ(x, y) = Kx+ ωyk
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where the (ωxk)k≥0 and (ωyk)k≥0 denote independent and identically distributed centered Gaussian vectors satisfying

E
[
ωxkω

x
k
⊤
]
=
δ2

d
I, E

[
ωykω

y
k
⊤
]
=
δ2

d
I.

This problem was first studied in [38] where it was shown that the sequence of iterates (xk, yk)k≥0 generated by SAPD
converges in distribution to an centered gaussian which covariance matrix Σ∞ is solution of a Lyapunov equation
parameterizeds by τ, σ, θ, and K. Precisely, denoting zk = [xk−1, yk]

⊤ and ωk =
[
ωxk−1ω

y
k−1;ω

y
k

]⊤
, the authors

observe that (zk)k≥0 satisfies the recurrence relation zk+1 = Azk +Bωk where A and B are defined as

A≜

[ 1
1+τµx

Id
−τ

(1+τµx)
K⊤

1
1+σµy

(
σ(1+θ)
1+τµx

− σθ
)
K 1

1+σµy

(
Id − τσ(1+θ)

1+τµx
KK⊤

) ] , B≜

[ −τ
1+τµx

Id 0d 0d
−τσ(1+θ)

(1+τµx)(1+σµy)
K −σθ

1+σµy
Id

σ(1+θ)
1+σµy

Id

]

As a result, the covariance matrix Σk of zk satisfies for all k,

Σk+1 = AΣkA
⊤ +R. (C.2)

where R = δ2

d BB
⊤ +AE

[
zkω

⊤
k

]
B⊤ +BE

[
ωkz

⊤
k

]
A⊤. Using the independence assumptions on the ωxk ’s and ωyk’s,

elementary derivations lead to expressing R as

R =
δ2

d

 τ2

(1+τµx)
2

(
τ2σ(1+θ)

(1+τµx)
2(1+σµy)

+ τσ2θ(1+θ)

(1+σµy)
2(1+τµx)

)
K(

τ2σ(1+θ)

(1+τµx)
2(1+σµy)

+ τσ2θ(1+θ)

(1+σµy)
2(1+τµx)

)
K σ2(1+θ)2

(1+σµy)
2

(
τ2

(1+τµx)
2 + 2τσθ

(1+τµx)(1+σµy)

)
KK + σ2

(1+σµy)
2

(
1 +

2θ(1+θ)σµy

1+σµy

) .
Provided that the spectral radius ρ(A) of A is less than 1, the sequence (Σk)k≥0 converges to a matrix Σ∞ satisfying

Σ∞ = AΣ∞A⊤ +R (C.3)

Leveraging the spectral theorem, it is shown in [38] that an orthogonal change of basis enables to reduce the 2d× 2d
Lyapunov equation to d systems of the form

Σ∞,λi = AλiΣ∞,λiAλi
⊤
+Rλi (C.4)

with

Aλi ≜

[ 1
1+τµx

Id
−τ

(1+τµx)
λi

1
1+σµy

(
σ(1+θ)
1+τµx

− σθ
)
λi

1
1+σµy

(
Id − τσ(1+θ)

1+τµx
λ2i

) ]

Rλi ≜

 τ2

(1+τµx)
2

(
τ2σ(1+θ)

(1+τµx)
2(1+σµy)

+ τσ2θ(1+θ)

(1+σµy)
2(1+τµx)

)
λi(

τ2σ(1+θ)

(1+τµx)
2(1+σµy)

+ τσ2θ(1+θ)

(1+σµy)
2(1+τµx)

)
λi

σ2(1+θ)2

(1+σµy)
2

[
τ2

(1+τµx)
2 + 2τσθ

(1+τµx)(1+σµy)

]
λ2i +

σ2

(1+σµy)
2

(
1 +

2θ(1+θ)σµy

1+σµy

) 
and λi denotes one of n real eigenvalues of A. From that point onwards, [38] proceed to a numerical solving of this
Lyapunov equation for a randomly generated matrix K. In contrast, analytically solving (C.4) is a challenging problem
that standard symbolic computation tools were not in position to address: we obtain several pages long answers for
each coefficient of the equilibrium matrix. In the next section we provide answers along this direction under the
Chambolle-Pock parameterization:

τ =
1− θ
θµx

, σ =
1− θ
θµy

. (C.5)

A notable outcome of this development will be the sharpness of our analysis when we will consider the larger class of
strongly-convex/strongly-concave problems subject to sub-gaussian perturbation (see Section 3).

C.1 Analytical hand-solving

In this section, we solve analytically (C.4) under the parameterization (C.5). Throughout, we let κ≜ λ√
µxµy

. κ refers

intuitively to a local condition number and will play a key role in the expression of the solution Σ∞,λ. The main result
of this section holds as follows
Proposition C.1. Under the Chambolle-Pock parameterization, the solutions Σ∞,λi of (C.4) satisfy

Σ∞,0 =
δ2

d

(1− θ)
µ2
xµ

2
y(1 + θ)

[
µ2
y

(
1− θ2

)
(θµx + µy)λ(

1− θ2
)
(θµx + µy)λ (1− θ)2(1 + θ)2

(
1 + 2θ µx

µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
) ]
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if 0 ∈ Sp(A), and for any non null λ ∈ Sp(A),

Σ∞,λ =
δ2(1− θ)
dλ2iPc(θ, κ)

 λ2
i

µ2
x

(
P

(1)
1,1 (θ, κ) +

λ2
i

µ2
y
P

(2)
1,1 (θ, κ)

)
λ
µx

(
P

(1)
1,2 (θ, κ) +

λ2
i

µ2
y
P

(2)
1,2 (θ, κ)

)
λ
µx

(
P

(1)
1,2 (θ, κ) +

λ2
i

µ2
y
P

(2)
1,2 (θ, κ)

)
P

(1)
2,2 (θ, κ) +

λ2
i

µ2
y
P

(2)
2,2 (θ, κ)


where the P (k)

q,ℓ and Pc are polynomials in θ, κ, defined in Equations (C.11) to (C.14).

As a direct consequence, on can deduce the actual the covariance matrix of the limiting distribution limN∞(xN , yN )
(as opposed to limn→∞ zn = (xn−1, yn)),

Corollary 4. The covariance matrix of the limiting Gaussian vector limN (xN , yN ) satisfies

Σ⋆ =

[
1

(1+τµx)2

(
Σ∞

11 + τ2KΣ∞
22K

⊤ − 2τKΣ∞
12

)
1

1+τµx
(Σ∞

12 − τKΣ∞
22)

1
1+τµx

(Σ∞
12 − τKΣ∞

22) Σ∞
22

]
(C.6)

Proof. Immediate, given the relation xn = 1
1+τµx

(xn−1 − τKyn).

Proof of Proposition C.1. We first note that under the parameterization (C.5), the matrices Aλ and Rλ simplify to

Aλ =

[
θ −(1− θ) λµx

(1− θ)θ2 λ
µy

θ − (1− θ)2(1 + θ)κ2

]

Rλ =
δ2

d

(1− θ)2

µ2
xµ

2
y

[
µ2
y

(
1− θ2

)
(θµx + µy)λ(

1− θ2
)
(θµx + µy)λ (1− θ)2(1 + θ)2

(
1 + 2θ µx

µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
) ]

If λ = 0, then Aλ = Diag(θ, θ). Hence, using the relation Vec(ABC) = (C⊤ ⊗A)Vec(B), we have

Σ∞,λ = AλΣ∞,λAλ +R⇔ Vec
(
Σ∞,λ

)
=
(
Aλ ⊗Aλ

)
Vec

(
Σ∞,λ

)
+Vec(Rλ)

⇔ Vec
(
Σ∞,λ

)
=
(
I −Aλ ⊗Aλ

)−1
Vec

(
Rλ
)
.

Noting that
(
I −Aλ ⊗Aλ

)−1
= Diag( 1

1−θ2 ,
1

1−θ2 ,
1

1−θ2 ,
1

1−θ2 ), we obtain Σ∞,0 = 1
1−θ2R

0.

From now on, let us fix a specific λ ∈ {λ1, . . . , λn} that we assume non null. We first start with a further reduction of
the system (C.4) by diagonalizing Aλ.

Lemma C.2. For any θ >
√
1− 2

κ2

(√
1 + κ2 − 1

)
, the matrix Aλ introduced in (C.4) admits the diagonalization

Aλ = V JV −1 where

J =

[
ν1 0
0 ν2

]
, V ≜

[
−Aλ1,2 −Aλ1,2
θ − ν1 θ − ν2

]
,

with

• ν1 ≜
(2θ−(1−θ)2(1+θ)κ2)+i

√
|∆|

2

• ν2 ≜
(2θ−(1−θ)2(1+θ)κ2)−i

√
|∆|

2

• ∆ = (1− θ)4(1 + θ)2κ4 − 4θ2(1− θ)2κ2.

Proof. Noting that Tr(Aλ) = 2θ− (1− θ)2(1 + θ)κ2 and Det(Aλ) = θ2 − (1− θ)2θκ2, the characteristic polynomial
of Aλ has for discriminant

∆ = Tr(Aλ)− 4Det(Aλ) =
(
(1− θ)4(1 + θ)2κ4 − 4θ2(1− θ)2κ2

)
Note also that

∆ < 0 ⇐⇒ (1− θ2)2 ≤ 4θ2

κ2
⇐⇒ θ ≥

√
1− 2

κ2

(√
1 + κ2 − 1

)
,
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and in such case, Aλ admits the two complex conjugate values ν1, ν2 specified above. Furthermore, observe that for
ν ∈ C, x, y ∈ C,

(Aλ − vI)
[
x
y

]
= 0⇔

{
(θ − v)x+Aλ1,2y = 0
a21x+ (a22 − v) y = 0

⇔ y =
− (θ − v)
Aλ1,2

x

⇔ (x, y) ∈ Span

(
1

− (θ−v)
Aλ

1,2

)
= Span

(
−Aλ1,2
θ − v

)
where the second line follows from assuming θ < 1 and λ ̸= 0. This justifies setting V as in Lemma C.2.

Lemma C.3. The equilibrium covariance matrix Σ∞,λ satisfies

Vec
(
Σ̃∞,λ

)
= (Id2 − J ⊗ J)−1 Vec(R̃λ) (C.7)

where

Σ̃∞,λ≜V −1Σ∞,λ(V −1)⊤

R̃λ≜V −1Rλ
(
V −1

)⊤
and J, V denotes the diagonalization of A, as expressed in Lemma (C.2).

Proof. Given Lemma C.2, (C.4) writes

Σ∞,λ = V JV −1Σ∞,λ(V −1)⊤J⊤V ⊤ +Rλ,

which amounts to
V −1Σ∞,λ(V −1)⊤ = JV −1Σ∞,λ(V −1)⊤J⊤ + V −1R(V −1)⊤,

i.e.
Σ̃∞,λ = JΣ̃∞,λJ⊤ + R̃λ

Finally, noting the relation Vec(ABC) = (C⊤ ⊗A)Vec(B), it remains to show that I − J ⊗ J is invertible. Observing
that

J ⊗ J =

 ν21 0 0 0
0 ν1ν2 0 0
0 0 ν1ν2 0
0 0 0 ν22

 ,

it suffices to show that ν1ν2 ̸= 1. Now, in view of Lemma 5.3, we have for any θ ≥ 0 such that θ ̸= 1

ν1ν2 − 1 = 0 ⇐⇒ −(1− θ)
(
1 + θ + (1− θ)θκ2

)
= 0

⇐⇒ 1 + (1− κ2)θ − θ2κ2 = 0

⇐⇒ θ =
κ2 − 1±

√
(κ2 − 1)2 + 4κ2

2κ2

⇐⇒ θ ∈ {−1/κ2, 1}

which completes the proof.

Let us now compute each of the quantities involved in (C.7).

Computation of R̃λ. Using the Cramer rule, first observe that V −1 satisfies

V −1 =
1

Aλ1,2 (ν2 − ν1)

[
(θ − ν2) +Aλ1,2
− (θ − ν1) −Aλ1,2

]
from which we deduce

R̃λ = V −1RλV −1⊤ =
δ2(1− θ)2

d(Aλ1,2)
2 (ν1 − ν2)2 µ2

xµ
2
y

[
Q1,1 Q1,2

Q1,2 Q2,2

]
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where

Q1,1 ≜ (θ − ν2)2 µ2
y

+ (Aλ1,2)
2

(
(1− θ)2(1 + θ)2

(
1 + 2θ

µx
µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
))

+ 2Aλ1,2 (θ − ν2)
(
1− θ2

)
(θµx + yy)λ

Q2,2 ≜ (θ − ν1)2 µ2
y

+ (Aλ1,2)
2

(
(1− θ)2(1 + θ)2

(
1 + 2θ

µx
µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
))

+ 2Aλ1,2 (θ − ν1)
(
1− θ2

)
(θµx + yy)λ

Q1,2 ≜ − (θ − ν2) (θ − ν1)µ2
y

− (Aλ1,2)
2

(
(1− θ)2(1 + θ)2

(
1 + 2θ

µx
µy

)
λ2 + µx

2
(
1 + 2

(
1− θ2

)
θ
))

+
(
1− θ2

)
(θµx + µy)λA

λ
1,2 (ν1 + ν2 − 2θ)

(C.8)

Computation of Σ̃∞,λ and partial expression of Σ∞,λ. Noting that

(I − J ⊗ J)−1
=


1

1−ν2
1

0 0 0

0 1
1−ν1ν2 0 0

0 0 1
1−ν1ν2 0

0 0 0 1
1−ν2

2


we deduce

Σ̃∞,λ =
δ2(1− θ)2

d(Aλ1,2)
2 (ν1 − ν2)2 µ2

xµ
2
y

[
1

1−ν2
1
Q1,1

1
1−ν1ν2 Q1,2

1
1−ν1ν2 Q1,2

1
1−ν2

2
Q2,2

]
Hence, we have

Σ∞,λ = V Σ̃∞,λV ⊤ =
δ2(1− θ)2

d(Aλ1,2)
2 (ν1 − ν2)2 µ2

xµ
2
y

[
S1,1 S1,2

S1,2 S2,2

]
with

• S1,1 ≜(Aλ1,2)
2
(
Σ̃∞,i

1,1 + Σ̃∞,i
2,2 + 2Σ̃∞,i

1,2

)
• S1,2 = −Aλ1,2

[
(θ − ν1) Σ̃∞,i

1,1 + (θ − ν2) Σ̃∞,i
2,2 + (2θ − (ν1 + ν2)) Σ̃

∞,i
1,2

]
• S2,2 = (θ − ν1)2 Σ̃∞,i

1,1 + (θ − ν2)2 Σ̃∞,i
1,2 + 2 (θ − ν1) (θ − ν2) Σ̃∞,i

1,2

Simplification of S1,1. Given the expression of Σ̃∞,i, we have

S1,1 =
(1− θ)2λ2

µ2
x

1

(1− ν21) (1− ν22) (1− ν1ν2)
×



(
1− ν22

)
(1− ν1ν2)

 (θ − ν2)2 µ2
y

+(Aλ1,2)
2
(
(1− θ)2(1 + θ)2

(
1 + 2θ µx

µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
))

+2Aλ1,2 (θ − ν2)
(
1− θ2

)
(θµx + µy)λ


+2
(
1− ν21

) (
1− ν22

) − (θ − ν2) (θ − ν1)µ2
y

−(Aλ1,2)2
(
(1− θ)2(1 + θ)2

(
1 + 2θ µx

µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
))

+
(
1− θ2

)
(θµx + µy)λA

λ
1,2 (ν1 + ν2 − 2θ)


+(1− ν1ν2)

(
1− ν21

) (θ − ν1)2 µ2
y

+(Aλ1,2)
2
(
(1− θ)2(1 + θ)2

(
1 + 2θ µx

µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
))

+2Aλ1,2 (θ − ν1)
(
1− θ2

)
(θµx + µy)λ




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First note that

µ2
y

(
(1− ν1ν2)

(
(θ − ν2)2

(
1− ν22

)
+ (θ − ν1)2

(
1− ν21

))
− 2

(
1− ν21

) (
1− ν22

)
(θ − ν1) (θ − ν2)

)
= µ2

y

 (
ν21 + ν22

) (
1 + θ2

)
−
(
ν41 + ν42

)
+ν1ν2

( (
ν21 + ν22

) (
1 + θ2

)
+
(
ν41 + ν42

)
− 2θ

(
ν31 + ν32

)
−2(1 + θ2)− 2ν1ν2θ

2 + 2θν1ν2 (ν1 + ν2)− 2 (ν1ν2)
2

) 

= µ2
y


−4(1− θ)2θ2

(
1− θ2

)2
κ2

+(1− θ)4
(
1 + 2θ − θ2 − 16θ3 − 17θ4 + 14θ5 + 9θ6

)
κ4

+(1− θ)6θ
(
3 + 14θ + 16θ2 − 12θ3 − 23θ4 − 6θ5

)
κ6

+(1− θ)8(1 + θ)2
(
−1− 2θ + 2θ2 + 8θ3 + θ4

)
κ8

−(1− θ)10θ(1 + θ)4κ10


where the last line can be deduced from Lemma 5.3. Second, we observe that(

1− ν22
)
(1− ν1ν2)− 2

(
1− ν21

) (
1− ν22

)
+ (1− ν1ν2)

(
1− ν21

)
=

 (1− θ)2κ2
(
2θ − 2θ(1 + 2θ)− 2θ3(1 + 2θ) + 2θ3

)
+(1− θ)4κ4

((
1 + θ2

)
(1 + θ)2 + 2θ2(1 + 2θ)− 2θ2

)
−(1− θ)6κ6θ(1 + θ)2


and

(Aλ1,2)
2

(
(1− θ)2(1 + θ)2

(
1 + 2θ

µx
µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
))

= µ2
y

(
(1− θ)4κ4(1 + θ)2 +

(
2θ(1− θ)4κ2(1 + θ)2 + (1− θ)2(1 + 2(1− θ2)θ)

) λ2
µ2
y

) (C.9)

and finally, noting that

2A12

(
1− θ2

)
(θµx + µy)λ = −µ2

y

(
2(1− θ)2(1 + θ)θ

λ2

µ2
y

+ (1− θ)2(1 + θ)2κ2
)

(C.10)

and using again Lemma 5.3, we obtain (
1− ν22

)
(1− ν1ν2) 2Aλ1,2 (θ − ν2)

(
1− θ2

)
(θµ2 + µy)λ

+2
(
1− ν21

) (
1− ν22

) (
1− θ2

)
(θµ2 + yy)λA

λ
1,2 (ν1 + ν2 − 2θ)

+ (1− ν1ν2)
(
1− ν21

)
2Aλ1,2 (θ − ν1)

(
1− θ2

)
(θµx + yy)λ


= 2A12

(
1− θ2

)
(θµx + µy)λ

(
−2ν1ν2θ + ν1ν2θ

(
ν21 + ν22

)
− ν1ν2

(
ν31 + ν22

)
+ν21ν

2
2 (ν1 + ν2) +

(
ν21 + ν22

)
θ − 2ν21ν

2
2θ

)

= µ2
y

(
2(1− θ)2(1 + θ)θ

λ2

µ2
y

+ (1− θ)2(1 + θ)2κ2
) 4(1− θ)2θ3(θ2 − 1)κ2

+(1− θ)4(θ + 2θ2 − 10θ4 − 5 ∗ θ5)κ4
+(1− θ)6θ2 ∗ (2 + 9θ + 8θ2 + θ3)κ6

−(1− θ)8θ ∗ (1 + θ)3κ8


Hence, grouping together the terms which have a λ2/µ2

y factor and those which do not, we obtain

S1,1 =
(1− θ)6λ2µ2

y

µ2
x (1− ν21) (1− ν22) (1− ν1ν2)

×


−4κ2θ2 (1 + θ)

2

+κ4
(

1 + 2θ − θ2 − 8θ3

−9θ4 + 6θ5 + θ6

)
+(1− θ)2κ6

(
θ + 4θ2 + 4θ3 − θ5

)


︸ ︷︷ ︸
P

(1)
1,1 (θ,κ)≜

+
λ2

µ2
y


−4κ2θ2

(
1 + 2θ − θ2 − 2θ3 + 2θ4

)
+(1− θ)2κ4

(
1 + 4θ + 4θ2 − 6θ3

−11θ4 + 2θ5 + 2θ6

)
+(1− θ)4κ6θ(1 + θ)2(1 + 2θ)


︸ ︷︷ ︸

P
(2)
1,1 (θ,κ)≜


(C.11)

28



A PREPRINT - MARCH 15, 2023

Simplification of S2,2. Similarly, (C.8), also gives

S2,2 =
1

(1− ν21) (1− ν22) (1− ν1ν2)
×

µ2
y

 (θ − ν1)2
(
1− ν22

)
(1− ν1ν2) (θ − ν2)2

(θ − ν2)2 (1− ν1ν2)
(
1− ν21

)
(θ − ν1)2

−2 (θ − ν1) (θ − ν2)
(
1− ν21

) (
1− ν22

)
(θ − ν2) (θ − ν1)


+(Aλ1,2)

2
(
(1− θ)2(1 + θ)2

(
1 + 2θ µx

µy

)
λ2 + µ2

x

(
1 + 2

(
1− θ2

)
θ
)) (θ − ν1)2

(
1− ν22

)
(1− ν1ν2)

+ (θ − ν2)2 (1− ν1ν2)
(
1− ν21

)
−2 (θ − ν1) (θ − ν2)

(
1− ν21

) (
1− ν22

)


+Aλ1,2
(
1− θ2

)
(θµx + yy)λ

 2 (θ − ν2) (θ − ν1)2
(
1− ν22

)
(1− ν1ν2)

+2 (θ − ν1) (θ − ν2)2 (1− ν1ν2)
(
1− ν21

)
+(ν1 + ν2 − 2θ) 2 (θ − ν1) (θ − ν2)

(
1− ν21

) (
1− ν22

)




which, combined with (C.9) and (C.10), gives

S2,2 =
µ2
y

(1− ν21) (1− ν22) (1− ν1ν2)
×

(
(θ − ν1)2 (θ − ν2)2

(
(1− ν1ν2)

(
2−

(
ν21 + ν22

))
− 2

(
1− ν21

) (
1− ν22

)) )
+

(
(1− θ)4κ4(1− θ)2

+ λ2

µ2
y

(
2θ(1− θ)4κ2(1 + θ)2 + (1− θ)2(1 + 2(1− θ)θ)

) ) (θ − ν1)2
(
1− ν22

)
(1− ν1ν2)

+ (θ − ν2)2 (1− ν1ν2)
(
1− ν21

)
−2 (θ − ν1) (θ − ν2)

(
1− ν21

) (
1− ν22

)


+
(
(1− θ)2(1 + θ)θ λ

2

µ2
y
+ (1− θ)2(1 + θ)κ2

) 2 (θ − ν2) (θ − ν1)2
(
1− ν22

)
(1− ν1ν2)

+2 (θ − ν1) (θ − ν2)2 (1− ν1ν2)
(
1− ν21

)
+(ν1 + ν2 − 2θ) 2 (θ − ν1) (θ − ν2)

(
1− ν21

) (
1− ν22

)



.

Finally, using Lemma (5.3), and grouping again terms with a λ2i /µ
2
y factor, we obtain

S2,2 =
µ2
y(1− θ)6

(1− ν21) (1− ν22) (1− ν1ν2)
×


−4κ6θ2

(
1 + 2θ − θ2 − 2θ3 + 2θ4

)
+(1− θ)2κ8

(
1 + 4θ + 4θ2 − 6θ3

−11θ4 + 2θ5 + 2θ6

)
+(1− θ)4κ10θ(1 + θ)2(1 + 2θ)


︸ ︷︷ ︸

P
(1)
2,2 (θ,κ)≜

+
λ2

µ2



κ24θ2 (1 + θ)
2 (−1− 2θ + 2θ3

)
+κ4

 1 + 4θ + 3θ2 − 20θ3

−45θ4 − 2θ5 + 53θ6

+20θ7 − 20θ8 − 2θ9


+(1− θ)2κ6θ

 3 + 14θ + 20θ2

−8θ3 − 47θ4

−30θ5 + 4θ6 + 4θ7


+(1− θ)4κ82θ2(1 + θ)3(1 + 2θ)


︸ ︷︷ ︸

P
(2)
2,2 (θ,κ)≜



(C.12)

Simplification of S1,2. Going through the exact same steps leads to

S1,2 =
µ2
y

µx

(1− θ)6λ
(1− ν21) (1− ν22) (1− ν1ν2)


−4κ4θ2

(
1 + 2θ − θ3

)
+(1− θ)κ6

(
1 + 3θ + θ2 − 8θ3

−11θ4 + θ5 + θ6

)
+(1− θ)3κ8θ(1 + θ)2(1 + 2θ)


︸ ︷︷ ︸

P
(1)
1,2 (θ,κ)≜

+
λ2

µ2



κ24θ4
(
1 + 2θ − θ3

)
−(1− θ)κ4θ2

(
5 + 15θ + 5θ2 − 20θ3

−11θ4 + 9θ5 + θ6

)
+(1− θ)3κ6

 1 + 5θ + 8θ2 − 3θ3

−21θ4 − 14θ5

+2θ6 + 2θ7


+(1− θ)5κ8θ(1 + θ)3(1 + 2θ)


︸ ︷︷ ︸

P
(2)
1,2 (θ,κ)≜



(C.13)
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Simplification of the common factor δ2(1−θ)2

d(Aλ
1,2)

2(ν1−ν2)2µ2
xµ

2
y

1

(1−ν2
1)(1−ν2

2)(1−ν1ν2)
.

δ2(1− θ)2µ2
y

d(Aλ1,2)
2 (ν1 − ν2)2 µ2

xµ
2
y

1

(1− ν21) (1− ν22) (1− ν1ν2)
=

δ2

dλ2i

1

(ν1 − ν2)2 (1− ν21) (1− ν22) (1− ν1ν2)

=
δ2

dλ2i (1− θ)5
1

−4κ2θ2 (1 + θ)
3

+κ4
(
1 + 3θ + θ2 − 17θ3 − 33θ4 − 3θ5 + 15θ6 + θ7

)
+(1− θ)κ6θ

(
3 + 14θ + 13θ2 − 24θ3 − 35θ4 + 10θ5 + 3θ6

)
+(1− θ)3κ8

(
−1− 4θ − 2θ2 + 14θ3 + 21θ4 + 2θ5 − 2θ6

)
−(1− θ)5κ10θ(1 + θ)2(1 + 2θ)


︸ ︷︷ ︸

Pc(θ,κ)≜

(C.14)

Conclusion. In view of the previous simplifications, the limit Σ∞,λ satisfies

Σ∞,λ =
δ2(1− θ)
dλ2iPc(θ, κ)

 λ2
i

µ2
x

(
P

(1)
1,1 (θ, κ) +

λ2
i

µ2
y
P

(2)
1,1 (θ, κ)

)
λ
µx

(
P

(1)
1,2 (θ, κ) +

λ2
i

µ2
y
P

(2)
1,2 (θ, κ)

)
λ
µx

(
P

(1)
1,2 (θ, κ) +

λ2
i

µ2
y
P

(2)
1,2 (θ, κ)

)
P

(1)
2,2 (θ, κ) +

λ2
i

µ2
y
P

(2)
2,2 (θ, κ)


where the P (k)

q,ℓ and Pc are polynomials in θ, κ, defined in Equations (C.11) to (C.14).

C.2 Illustrations

In this section, we illustrate and comment the properties of the equilibrium covariance derived in Section C.1.

Noise accumulates at a linear rate. First note that, though asymptotic, the equilibrium covariance matrix is reached at
at linear rate given by the square of the spectral radius of A.

Lemma C.4. For any θ >
√

1− 2
κ2

(√
1 + κ2 − 1

)
∥Σn − Σ∞∥= O

(
ρ(A)2n

)
(C.15)

Proof. Let V, J denote the Jordan decomposition of A (note that here, V is orthogonal). For n ∈ N, let Σ̃n :=

V −1Σn
(
V −1

)⊤
, Σ̃∞ := V −1Σ∞ (V −1

)⊤
, and R̃i = V −1Rλ

(
V −1

)⊤
. In view of the recursion (C.2), we have

Σ̃n+1 = JΣ̃nJ + R̃,

and vectorizing again this recursion lead to

Vec(Σ̃n+1) = (J ⊗ J)Vec(Σ̃n) + R̃,

i.e.

Σ̃n = (J ⊗ J)n−1 Σ̃1 +

n−1∑
k=1

(J ⊗ J)k−1 Vec(R̃)

Hence, noting that Σ̃∞ =
∑∞
k=0(J ⊗ J)k Vec(R̃) we obtain

∥Σn − Σ∞∥ = ∥Σ̃n − Σ̃∞∥= ∥Vec(Σ̃n)− Vec(Σ̃∞)∥

= ∥(J ⊗ J)n−1 Σ̃1 +

∞∑
k=n−1

(J ⊗ J)k−1 Vec(R̃)∥

≤ ρ(J ⊗ J)n−1 ∥Σ̃1 + Σ̃∞∥

and the result directly follows from observing that ρ (J ⊗ J) = ρ(A)2.

The convergence of covariances matrices can be observed on the toy instances displayed in Figure 3. We ran SAPD on
three 1D problems which constants are given as
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Figure 3: Noise accumulation over SAPD iterates: covariances matrices convergens to an equilibrium covariance as
derived in Section C.1
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Figure 4: Scaling of the equilibrium covariance matrix under the Chambolle-Pock parameterization (C.5).

1. Pb 1 : λ1 = 1, µx = 4.4, µy = 1.5 , δ = 35

2. Pb 2 : λ1 = 1, µx = 2, µy = 20 , δ = 50.

3. Pb 3 : λ1 = 10e−3, µx = 0.205, µy = 0.307 , δ = 5.

SAPD was run 2000 times for 500 iterations under the Chambolle-Pock parameterization (C.5), with θ fixed to .99.
We estimate the empirical covariance matrix on along iterations evenly distributed on a logscale, from 0 to 500. The
theoretical covariance matrix derived in the previous section is represented in red on each plot. Figure 3 confirms the
linear convergence of the matrices to the equilibrium matrix Σ⋆. Subsequently, we observe on these three examples
how noise accumulates along iterations, producing covariance matrices that increase with respect to Lowner order. Note
that this is a well-known property of Lyapunov recursions of the form C.3, as per [citation

needed].

Equilibrium covariance scales with stepsizes. In figure 4, we display the dependency of the coefficients of the
equilibrium covariance matrix with respect to the momentum θ under the Chambolle-Pock parameterization (C.5). We
observe that both diagonal coefficients of the covariance matrix scale with 1− θ for θ close to 1, while the non-diagonal
coefficient scales with (1− θ)2.

C.3 Proof of Theorem 3.3

We start with proving the lower bound, and then we will proceed to the upper bound.
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Lower bound. In view of Proposition C.1, z∞ follows a centered Gaussian distribution with covariance matrix Σ⋆ as
defined in (C.6). For K = µx = µy = 1 and θ ≥ θ̄, first observe that Σ∞,1 simplifies to

Σ∞,1 =
(1− θ)
Pc(θ)


(

2 + 6θ − 10θ2 − 42θ3 − 6θ4

+42θ5 − 22θ6 − 6θ7 + 4θ8

)
(1− θ)

(
2 + 8θ − 6θ2 − 56θ3 − 38θ4

+60θ5 + 30θ6 − 32θ7 − 4θ8 + 4θ9

)
(1− θ)

(
2 + 8θ − 6θ2 − 56θ3 − 38θ4

+60θ5 + 30θ6 − 32θ7 − 4θ8 + 4θ9

) (
2 + 10θ + 2θ2 − 62θ3 − 98θ4 + 14θ5

+118θ6 + 46θ7 − 64θ8 − 8θ9 + 8θ10

)
,

with Pc(θ) = 4θ + 16θ2 − 16θ3 − 112θ4 − 40θ5 + 112θ6 − 16θ7 − 16θ8 + 4θ9. We thus have

Σ⋆ =

[
θ2Σ∞,1

11 + (1− θ)2Σ∞,1
22 − 2(1− θ)θΣ∞,1

12 θΣ∞,1
12 − (1− θ)Σ∞,1

22

θΣ∞,1
12 − (1− θ)Σ∞,1

22 Σ∞,1
22

]

=
(1− θ)
Pc(θ)


(

2 + 4θ − 18θ2 − 30θ3 + 54θ4 + 38θ5 − 94θ6

−6θ7 − 28θ8 + 70θ9 − 16θ10 − 12θ11 + 4θ12

) (
−2− 6θ + 14θ2 + 50θ3 − 14θ4 − 94θ5 − 6θ6

+42θ7 + 48θ8 − 28θ9 − 8θ10 + 4θ11

)
(
−2− 6θ + 14θ2 + 50θ3 − 14θ4 − 94θ5 − 6θ6

+42θ7 + 48θ8 − 28θ9 − 8θ10 + 4θ11

) (
2 + 10θ + 2θ2 − 62θ3 − 98θ4 + 14θ5

+118θ6 + 46θ7 − 64θ8 − 8θ9 + 8θ10

)
.

Since the eigenvalues of a 2 × 2 symmetric matrix
[
u w
w v

]
can be written in closed form

1
2

(
u+ v ±

√
(u− v)2 + 4w2

)
, the smallest eigenvalue λ1 of Σ⋆ satisfies

λ1 =
1

2

(
Σ⋆11 +Σ⋆22 −

√
(Σ⋆11 − Σ⋆12)

2
+ 4Σ⋆12

2

)
. (C.16)

Furthermore, by sub-additivity of
√
·, we have

u+ v −
√
(u− v)2 + 4w2 ≥ (u+ v)− |u− v|−2|w|= 2(min{u, v} − |w|);

therefore, we get
λ1 ≥ min{Σ⋆11,Σ⋆22} − |Σ⋆12|. (C.17)

Let U ≜(Σ⋆)−1/2z∞, then U follows a multi-variate standard normal distribution in 2 dimension; hence, ∥U∥2 follows
χ2 with 2-degrees of freedom, and we have λ1∥U∥2≤ ∥z∞∥2, i.e., ∥z∞∥2 can be lower bounded in a.s. sense by a
Gamma random variable with shape-scale parameters (1, 2λ1). Thus, for any t ≥ 0,

P
[
∥z∞∥2≥ t

]
≥ P

[
λ1∥U∥2≥ t

]
= Γ

(
1,

t

2λ1

)
= e

−t
2λ1 ,

where Γ : a, x 7→
∫∞
x
sa−1e−s d s denotes the upper incomplete Gamma function. Thus,

Qp(∥z∞∥2) ≥ 2λ1 log

(
1

1− p

)
.

Now, we provide an upper bound on |Σ⋆12| to be able to give a further lower bound on λ1 based on (C.17). First, observe
that Σ⋆12 = 1−θ

Pc(θ)
H(θ) for

H(θ) ≜− 2− 6θ + 14θ2 + 50θ3 − 14θ4 − 94θ5 − 6θ6 + 42θ7 + 48θ8 − 28θ9 − 8θ10 + 4θ11

= 2(1− θ)2(θ2 − 2θ − 1)(θ2 + 2θ − 1)(−1− 5θ − 8θ2 − 4θ3 + 2θ5).

Note that (θ2 − 2θ − 1)(θ2 + 2θ − 1) = (1 − θ2)2 − 4θ2 ∈ [−4, 1] for θ ∈ [0, 1]; furthermore, h(θ)≜(−1 − 5θ −
8θ2 − 4θ3 + 2θ5) satisfies h(0) < 0 and h′(θ) = −5 − 16θ − 12θ2 + 10θ4<0 for θ ∈ [0, 1], which implies that
|h(θ)|≤ |h(1)|= 16. Hence,

|Σ⋆12|≤ 128
(1− θ)3

Pc(θ)
,

and using (C.16) and (C.17), we can conclude that

λ1 ≥(1− θ)min

(
D1(θ)− 128(1− θ)2

Pc(θ)
,
D2(θ)− 128(1− θ)2

Pc(θ)

)
,

with D1(θ)≜
Pc(θ)
1−θ Σ⋆11 and D2(θ)≜

Pc(θ)
1−θ Σ⋆22. Hence
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Algorithm 2 SGDA Algorithm

Require: Stepsize α. Starting point (x0, y0). Horizon N
1: for k ≥ 0 do
2: yk+1 ← yk + α ∇̃y Φ(xk, yk, ω

y
k)

3: xk+1 ← xk − α ∇̃x Φ(xk, yk, ω
x
k)

return (xN , yN )

Qp(∥z∞∥2) ≥ 2(1− θ)min
(
D1(θ)−128(1−θ)2

Pc(θ)
, D2(θ)−128(1−θ)2

Pc(θ)

)
log
(

1
1−p

)
≜ψ1(p, θ),

Noting that D1(θ), D2(θ)→ −32 as θ → 1, we conclude that for any fixed p ∈ (0, 1), ψ1(p, θ) = Θ(1− θ).

Upper bound. The CP parametrization corresponds to choosing α = 1
2σ −

√
θLyy in the matrix inequality [38, Cor. 1].

Under this parameterization, the metric En = Dn/ρ simplifies to

En =
θ

1− θ

(
1

µx
x2n +

1

µy
y2
)
.

By From (4.25), the p-quantile of ∥z∞∥2 satisfies

Qp(∥z∞∥2) ≤ (1− θ)max(µx, µy)

(
1

1− θ
96Qδ̄2

(
1 + max

{
1,

4

3θ

∥A∥2F
Q

}
log

(
1

1− p

)))
︸ ︷︷ ︸

ψ2(p,θ)≜

,

for any p ∈ (0, 1). It suffices therefore to show that Q = Θ(1− θ), and ∥A∥2F= Θ(1− θ), as θ → 1. Given Table, we
readily observe that ∥A0∥2= Θ(1− θ) and ∥B0∥, ∥B1∥, ∥B2∥ are Θ(1− θ) as θ → 1. This implies thatQ = Θ(1− θ)
as θ → 1.

Similarly, for ∥A∥2F , it suffices to show that ∥A1∥2, ∥A2∥2, ∥A3∥2= Θ(1 − θ), as θ → 1. Following the same
line of arguments, one may observe that ∥A1∥2= Θ(32µ−1

x (1 − θ)), ∥A2∥2= Θ(512µ−1
y (1 − θ)), and ∥A3∥2=

Θ(128µ−1
y (1− θ)), as θ → 1. This ensures overall that ∥A∥2= Θ(1− θ) as θ → 1.

D Preliminary results for SGDA

In this section, we derive non-asymptotic convergence rate for the Proximal Stochastic Gradient Descent Ascent
Algorithm (SGDA) holding with high probability. Our analysis relies on a recent concentration inequality derived in [18]
Mention how we customize it in this setting, and challenges etc. otherwise refereees may think our results is obvious.
For the main result of this section, we consider the more general problem

min
x∈X

max
y∈Y

Φ(x, y). (D.1)

and we replace the structured Assumption 1 by the following standard setting.
Assumption 1’. Φ:Rd×Rd → R is a continuously differentiable function such that:

(i) For all y ∈ Y , Φ(·, y) is µ-strongly convex and L-smooth.

(ii) For all x ∈ X , Φ(x, ·) is µ-strongly concave and L-smooth.

For any k ∈ N, we introduce zk ≜(xk, yk)
⊤ and denote z⋆≜(x⋆, y⋆) the unique saddle point of the SP problem

in (D.1).
Theorem D.1. Let (xk, yk)k∈Z+

be the sequence generated by SGDA, initialized at an arbitrary couple (x0, y0) ∈
X ×Y , and for a stepsize α ≤ µ

4L2 . Then, for all k ∈ Z+ and δ ∈ (0, 1), with probability greater than p:

En ≤ (1− αµ

2
)n E0 +

32αδ2

µ

(
1 + 10 log

(
4

1− p

))
, (D.2)

where En≜∥xn − x⋆∥2+∥yn − y⋆∥2.

The proof of this theorem is deferred to the section D of the appendix.
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D.1 Convergence analysis of SGDA

We analyze in this section the convergence of SAPD in high probability. We first recall that SGDA is known to converge
in expectation as per the following result, proved in [11, Theorem III.2.].

Proposition D.2. Let (zn)n≥0 be the sequence generated by SAPD with a stepsize α ∈ (0, µ
4L2 ]. We have for any n ∈ N

E[∥zn − z⋆∥2] ≤ (1− αµ)n∥z0 − z⋆∥2+2α

µ
V

where V denotes a uniform upperbound on (Var(∆Φ
i ))i≥0.

We introduce the concatenated gradient operator A : z 7→ (∇x Φ,∇y Φ)
⊤. We recall that, in view of Assumption 1’ A

satisfies the coercive and the cocoercive properties

⟨A(u)−A(v), u− v⟩ ≥ µ∥u− v∥2, ∀u, v ∈ X ×Y (D.3)

⟨A(u)−A(v), u− v⟩ ≥ µ

4L2
∥A(u)−A(v)∥2, ∀u, v ∈ X ×Y (D.4)

We first prove a standard result on the monotonic decrease of the distance to the solution, displayed by the (non-
stochastic) gradient descent ascent.

Lemma D.3. If α ≤ µ
4L2 , we have for all n ∈ N,

∥zi − z⋆−αA(zi)∥2≤ (1− αµ)∥zi − z⋆∥2. (D.5)

Proof. Noting that A(z⋆) = 0, we have, by Eq. (D.3) and Eq. (D.4), for any i ∈ N

∥zi − z⋆−αA(zi)∥2 = ∥zi − z⋆∥2−2α⟨zi − z⋆, A(zi)⟩+ α2∥A(zi)∥2

≤ ∥zi − z⋆∥2−αµ∥zi − z⋆∥2− αµ

4L2
∥A(zi)∥2+α2∥A(zi)∥2

≤ (1− αµ)∥zi − z⋆∥2+α
(
α− µ

4L2

)
∥A(zi)∥2

≤ (1− αµ)∥zi − z⋆∥2

with the last inequality following from the stepsize condition.

In what follows, we let ∆Φ
i ≜ (∆x

i ,∆
y
i ) be the oracle noise at step i ∈ N. We note that, by Assumption 4, ∆Φ

i is
δ-subGaussian for some δ > 0. We prove now Theorem D.1.

Proof of TheoremD.1. We wish to apply the recursive control property 4.2. We first observe, in view of Lemma D.3
that, for all n ≥ 0

∥zn+1 − αA(zn+1)− z⋆∥2 ≤ (1− αµ)∥zn+1 − z⋆∥2= (1− αµ)∥zn − αA(zn)− z⋆−α∆Φ
n∥2

≤ (1− αµ)Vn +Dn +Rn.

where Vn≜∥zn−αA(zn)− z⋆∥2, Dn≜−2α(1−αµ)⟨zn−αA(zn)− z⋆,∆Φ
n ⟩, and Rn≜(1−αµ)α2∥∆Φ

n∥2. Let us
now check that Vn, Dn, and Rn satisfy the requirements of Proposition 4.2. Let (Fn)n≥−1 be the filtration generated
by (∆Φ

n )n≥0, with F−1 ≜{,Ω}. For any n ∈ N, Vn is non-negative and Fn-measurable. For any λ > 0, we have

E[exp(λDn)|Fn] ≤ E(exp(32λ2α2δ2(1− αµ)2Vn)) (by Lemma 2.2)

and E[exp(λRn)|Fn] ≤ E(exp(8λα2(1− αµ)δ2)) (by Lemma 2.1).

Hence, by Proposition 4.2, for any n ∈ N, any p ∈ (0, 1), the estimate

∥zn−αA(zn)−z⋆∥2≤
(
1− αµ

2

)n
∥z0−αA(z0)−z⋆∥2+

32α(1− αµ)δ2

µ

(
1 + (1 + 8(1− αµ))

(
1 + log

(
2

1− p

)))
is satisfied with probability at least greater than (1 + p)/2. Notice finally that ∥zn+1 − z⋆∥2≤ 2∥zn − αA(zn) −
z⋆∥2+2α2∥∆Φ

n∥2≤ 2∥zn − αA(zn) − z⋆∥2+4α2δ2 log
(

4
1−p

)
. We conclude with a union bound, observing that
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1− αµ ≤ 1: for any n ∈ N, the estimate

∥zn+1 − z⋆∥2 ≤ 2
(
1− αµ

2

)n
∥z0 − z⋆∥2+32α(1− αµ)δ2

µ

(
1 + (1 + 8(1− αµ))

(
1 + log

(
2

1− p

)))
+ 4α2δ2 log

(
4

1− p

)
≤
(
1− αµ

2

)n
2∥z0 − z⋆∥2+32αδ2

µ

(
1 + 10 log

(
4

1− p

))
is satisfied with probability greater than p.
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