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Abstract

We present a federated learning framework that is designed to robustly deliver good predictive performance
across individual clients with heterogeneous data. The proposed approach hinges upon a superquantile-based learning
objective that captures the tail statistics of the error distribution over heterogeneous clients. We present a stochastic
training algorithm which interleaves differentially private client reweighting steps with federated averaging steps. The
proposed algorithm is supported with finite time convergence guarantees that cover both convex and non-convex settings.
Experimental results on benchmark datasets for federated learning demonstrate that our approach is competitive with
classical ones in terms of average error and outperforms them in terms of tail statistics of the error.

1 Introduction
Federated learning is a distributed machine learning framework where many clients (e.g. mobile devices) collaboratively
train a model under the orchestration of a central server (e.g. service provider), while keeping the training data private
and local to the client throughout the training process [54, 37]. It has found widespread adoption across industry [6, 61]
for applications ranging from applications on smart devices [83, 31] to healthcare [8, 34].

A key feature of federated learning is statistical heterogeneity, i.e., client data distributions are not identically
distributed [37, 49]. In typical cross-device federated learning scenarios, each client corresponds to a user. The diversity
in the data they generate reflects the diversity in their unique personal, cultural, regional and geographical characteristics.

This data heterogeneity in federated learning manifests itself as a train-test distributional shift. Indeed, the usual
approach minimizes the prediction error of the model on average over the population of clients available for training [54],
while at test time, the same model is deployed on individual clients. This approach can be liable to fail on clients whose
data distribution is far from most of the population or who may have less data than most of the population. It is highly
desirable, therefore, to have a federated learning method that can robustly deliver good predictive performance across a
wide variety of natural distribution shifts posed by individual clients.

We present in this paper a robust approach to federated learning that guarantees a minimal level of predictive
performance to all clients even in situations where the population is heterogeneous. The approach we develop addresses
these issues by minimizing a learning objective based on the notion of a superquantile [67, 70], a risk measure that
captures the tail behavior of a random variable.

Training models with a learning objective involving the superquantile raises challenges. The superquantile is a
non-smooth functional with sophisticated properties. Furthermore, the superquantile function can be seen as a kind of
nonlinear expectation that we would like to blend well with averaging mechanisms. We show how to address the former
by leveraging the dual formulation and the latter by leveraging the tail-domain viewpoint. As a result, we can obtain
an algorithm that can be implemented in a similar way to FedAvg [54] yet offers important benefits to heterogeneous
populations.

The approach we propose, ∆-FL, allows one to control higher percentiles of the distribution of errors over the
heterogeneous population of clients. We show in the experiments that our approach is more efficient than a direct
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Figure 1: Schematic summary of the ∆-FL framework. Left: The server maintains multiple models wθj , one for each level of
conformity θj . Middle: During training, selected clients participate in training each model wθj . Individual updates are securely
aggregated to update the server model. Right: Each test user is allowed to select their level of conformity θ, and are served the
corresponding model wθ .

approach simply seeking to minimize the worst error over the population of clients. Compared to FedAvg, ∆-FL
delivers improved prediction to data-poor or non-conforming clients. We present finite time theoretical convergence
guarantees for the ∆-FL algorithm when used to train additive models or deep networks and show how to implement it
in a way that is compatible and modular with secure aggregation and distributed differential privacy.

1.1 Contributions
We make the following concrete contributions.

• The ∆-FL Framework: We introduce the ∆-FL framework, summarized in Figure 1, which seeks to guarantee
a minimal level of predictive performance on nonconforming clients. The framework relies on a nonsmooth
superquantile-based objective to minimize the tail statistics of the prediction errors on the client data distributions.
The objective is parameterized by the conformity level, which is a scalar summary of how closely a client conforms
to the population.

• Optimization Algorithm, Convergence and Privacy Analysis: To optimize the ∆-FL objective, we present a federated
optimization algorithm which interleaves differentially private client reweighting steps with federated averaging
steps. We establish bounds on its rate of convergence in the convex and nonconvex cases. Further, we provided an
analysis of the differential privacy of the proposed algorithm.

• Numerical Experiments: We perform numerical experiments using neural networks and linear models, on tasks
including image classification, and sentiment analysis based on public datasets. The experiments demonstrate
superior performance of ∆-FL over state-of-the-art baselines on the upper quantiles of the error on test clients, with
particular improvements on data-poor clients, while being competitive on the mean error.

Outline. We start with Section 2 to describe the related work. Section 3 describes the general setup, recalls the FedAvg
algorithm for federated learning, and formalizes the notions of conformity and heterogeneity. Section 4 presents a
federated optimization algorithm for ∆-FL. We analyze its convergence in the convex and non-convex cases, as well
as its differential privacy properties in Section 5. We discuss extension to other risk measures and relations to fair
allocation in Section 6. Section 7 presents experimental results, comparing the proposed approach to existing ones, on
benchmark datasets for federated learning. Detailed proofs and additional details are deferred to the supplement. The
code and the scripts to reproduce results are made publicly available at https://github.com/krishnap25/
simplicial-fl.

An early version of this work was presented at IEEE CISS [45]. This paper extends and improves upon it in several
respects. First, we give an improved and sharp convergence analysis in both the general nonconvex as well as strongly
convex cases. Second, we augment our algorithm with differential privacy and analyze its privacy and utility. Finally,
we conduct an expanded numerical study, including comparing with baselines such as Tilted-ERM [52] that were
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published after our conference paper.

Notation. The norm ‖·‖ denote the Euclidean norm ‖·‖2 in Rd. We use ∆N−1 =
{
π ∈ RN+ :

∑N
k=1 πk = 1

}
to

denote the probability simplex in RN .

2 Related Work
Federated learning was introduced by [54] to handle distributed on-client learning [37, 49, 28]. A plethora of recent
extensions have also been proposed [84, 72, 55, 81, 56, 74, 35, 73, 16]. Our approach of addressing the statistical
heterogeneity by proposing a new objective, which is broadly applicable in these settings.

Distributionally robust optimization [4], which aims train models that perform uniformly well across all subgroups
instead of just on average, has witnessed a flurry of recent research [46, 23, 42]. This approach is closely related to
the risk measures studied in economics and finance [1, 66, 3, 27]. The recent works [43, 47, 17] study optimization
algorithms for risk measures. More broadly, risk measures have been successfully utilized in problems ranging from
bandits [71, 12], reinforcement learning [13, 77, 14], and fairness in machine learning [82, 65]. The federated learning
method we here is based on the superquantile [67], a popular risk measure. We propose a stochastic optimization
algorithm adapted to the federated setting and prove the convergence.

Addressing statistical heterogeneity in federated learning has led to two lines of work. The first includes algorithmic
advances to alleviate the effect of heterogeneity on convergence rates while still minimizing the classical expectation-
based objective function of empirical risk minimization. These techniques include the use of proximal terms [50], control
variates [38] or augmenting the server updates [78, 63]; we refer to the recent survey [79] for details. More generally,
the framework of local SGD has been used to study federated optimization algorithms [76, 85, 30, 21, 53, 39, 40].
Compared to these works which study federated optimization algorithms in the smooth case, we tackle in our analysis
the added challenge of nonsmoothness of the superquantile-based objective in both the general nonconvex and strongly
convex cases.

The second line of work addressing heterogeneity involves designing new objective functions by modeling statistical
heterogeneity and designing optimization algorithms. The AFL framework to minimize the worst-case error across all
training clients and associated generalization bounds were given in [57]. The concurrent work of [51] proposes the
q-FFL framework whose objective is inspired by fair resource allocation to minimize the Lp norm of the per-client
losses. Several related works were also published following the initial presentation of the current work [44]. A federated
optimization algorithm for AFL was proposed and its convergence was analyzed in [19]. Distributional robustness to
affine shifts in the data was considered in [64] along with convergence guarantees. Finally, a classical risk measure,
namely the entropic risk measure, was considered in [52]. We note that no convergence guarantees are currently known
for the stochastic optimization algorithms of [51].

3 Problem Setup
We begin this section by recalling the standard setup of federated learning in Section 3.1. We then describe the standard
approach to federated learning and its associated optimization, FedAvg [54] in Section 3.2. We then describe the
statistical heterogeneity in some detail in Section 3.3.

3.1 Federated Learning Setup
Federated learning consists of heterogeneous clients which collaboratively train a machine learning model under the
orchestration of a central server. The model is then deployed on all clients, including those not seen during training.

Let the vector w ∈ Rd denote the d model parameters. We assume that each client has a distribution q over some
data space such that the data on the client is sampled i.i.d. from q. The loss incurred by the model w ∈ Rd on this client
is F (w; q) := Eξ∼q[f(w; ξ)], where f(w; ξ) is the chosen loss function, such as the logistic loss, on input-output pair ξ
under the model w. The expectation above is assumed to be well-defined and finite. For a given distribution q, smaller
values of F (·; q) denote a better fit of the model to the data.
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There are N clients available for training. We number these clients as 1, . . . , N and denote the distribution on
training client k by qk. We denote the loss on client k by Fk(w) := F (w; qk). The goal of federated learning is to
train a model w so that it achieves good performance when deployed each test client, including those which are unseen
during training. Owing to statistical heterogeneity of federated learning, the distribution p of a specific test client could
be different from the average distribution (1/N)

∑N
k=1 qk that the model is trained on.

Each federated learning method is characterized by an objective function and the federated optimization algorithm
used to minimize it. It is not possible to achieve good performance on each client simultaneously with a single model w,
as it would be a difficult multiobjective optimization problem. The usual approach is combine the per-client losses into
a scalar and minimize this objective. The choice of the objective function and optimization algorithm are primarily
determined by the three key aspects of federated learning [37, 49]:
(1) Communication Bottleneck: The repeated exchange of massive models between the server and clients over resource-

limited wireless networks makes communication an important bottleneck. Therefore, training algorithms should be
able to trade-off more local computation for lower communication cost.

(2) Statistical Heterogeneity: The training distribution qk and a specific test distribution p are likely to be different
from each other. Therefore, a model which works well on average over all test clients might not work well on each
individual test client.

(3) Privacy: The data on each client is extremely privacy-sensitive. Federated learning is designed to protect data
privacy since no user data is transferred to a data center. This privacy is enhanced by secure aggregation of model
parameters, which refers to aggregating client updates such that no client update is directly revealed to any other
client or the server. This is achieved by cryptographic protocols based on secure multiparty communication [5].

3.2 Federated Learning and the FedAvg algorithm
Analogous to the classical expectation-based objective function in empirical risk minimization approach, the standard
objective in federated learning is to minimize the average loss on the training clients

min
w∈Rd

1

N

N∑
k=1

Fk(w) +
λ

2
‖w‖2 , (1)

where λ ≥ 0 is a regularization parameter. We will call this objective as the vanilla FL objective.
The de facto standard training algorithm is FedAvg [54]. Each round of the algorithm consists in following steps:

(a) The server samples a set S of m clients from [N ] and broadcasts the current model w(t) to these clients.
(b) Staring from w

(t)
k,0 = w(t), each client k ∈ S makes τ local gradient or stochastic gradient descent steps1 with a

learning rate γ:
w

(t)
k,j+1 = w

(t)
k,j − γ∇Fk(w

(t)
k,j) .

(c) The models from the selected clients are sent to the server and aggregated to update the server model

w(t+1) =
1

m

∑
k∈S

w
(t)
k,τ .

FedAvg addresses the communication bottleneck by using τ > 1 local computation steps as opposed to τ = 1 local
steps in minibatch SGD. It also performs the averaging step (c) securely to enhance data privacy. However, the vanilla
FL objective places a limit on how well statistical heterogeneity can be addressed. By minimizing the average training
loss, the resulting model w can sacrifice performance on “difficult” clients in order to perform well on average. In other
words, it is not guaranteed to perform well on individual test clients, whose distribution p might be quite different from
the average training distribution (1/N)

∑N
k=1 qk. Our goal in this work is to design an objective function, different

from the vanilla FL objective (1) to better handle statistical heterogeneity and the associated train-test mismatch. We
also design a federated optimization algorithm similar to FedAvg to optimize it.

1For simplicity, we consider full gradient steps on each client.
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Sθ(Z) = E[Z |Z > Qθ(Z)]

Figure 2: Left: The set of mixture weights π = (π1, π2, π3) of conformity conf(pπ) ≥ θ is given by the intersection of the box
constraints 0 ≤ πk ≤ (3θ)−1 for k = 1, 2, 3, with the simplex constraint π1 + π2 + π3 = 1. Right: (1−θ)-quantile Qθ(Z) and
superquantile Sθ(Z) of a continuous r.v. Z.

3.3 Problem Formulation: Conformity and Heterogeneity

In this work, we consider test clients whose distribution p can be written as a mixture pπ :=
∑N
k=1 πkqk of the training

distribution qk of the clients with weights π ∈ ∆N−1. Here, ∆N−1 denotes the probability simplex in RN . The test
distribution pπ is different from the average training distribution ptrain = (1/N)

∑N
k=1 qk if the mixture weights π are

different from 1/N at training time.
We now define conformity of a mixture pπ to the training distribution ptrain, as a measure of the degree of similarity

between pπ and ptrain.

Definition 1. The conformity conf(pπ) ∈ [N−1, 1] of a mixture pπ with weights π is defined as
(
N maxk∈[N ] πk

)−1
.

The conformity of a client refers to the conformity of its data distribution.

When π and α coincide, we have that conf(pπ) = 1, and this is the largest possible value of conf(pπ). On the other
extreme, suppose that πk = 1 for some k, so that π is very different from α. Here, conf(pπ) = 1/N , which is the
smallest value it takes. In other words, the conformity measures how similar the mixture weights π of pπ are to the
original weights α.

More generally, a mixture distribution pπ with conf(pπ) ≥ θ must satisfy πk ≤ 1/(θN) for each k. In other words,
the set of all mixture weights {π ∈ ∆N−1 : conf(pπ) ≥ θ} lie in an axis-parallel box around (1/N, · · · , 1/N), as
shown in Figure 2 (left). We do not directly impose a lower bound on πk because it is not realistic to assume that the
distribution on a test client must necessarily contain a component of every training distribution qk.

Interpretation. Assuming that the training clients are a representative sample of the population of clients, every client’s
distribution can be well-approximated by a mixture pπ for some π ∈ ∆N−1. The conformity of a client is a scalar
summary of how close it is to the population. A test client with conformity θ ≈ 1 closely conforms to the population.
Then, a model trained on the population ptrain is expected to have a high predictive power. In contrast, a test client with
θ ≈ 0 would be vastly different from the population ptrain, and the predictive power of a model trained on ptrain could
be poor. The inverse of the conformity 1/conf(pπ) is a measure of how much pπ is shifted relative to ptrain.

There is a trade-off between the fitting to the population and supporting non-conforming test clients. The conformity
θ presents a natural way to encapsulate this tradeoff in a scalar parameter. That is, given a conformity θ ∈ (0, 1), we
choose to only support test distributions pπ with conf(pπ) ≥ θ.

4 Handling Heterogeneity with ∆-FL
In this section, we introduce the ∆-FL framework in Section 4.1, and propose an algorithm to optimize in the federated
setting in Section 4.2.
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4.1 The ∆-FL Framework
The ∆-FL framework aims to address the train-test distributional mismatch by supplying each test client with a model
appropriate to its conformity. Given a discretization {θ1, . . . , θr} of (0, 1], ∆-FL maintains r models, one for each
conformity level θj . The local data is not allowed to leave a client due to privacy restrictions; hence, the conformity of a
test client cannot be measured. Instead, we allow each test client to tune their conformity. See the schematic in Figure 1
for an illustration.

To train a model for a conformity level θ, we aim to do well on all distributions pπ with conf(pπ) ≥ θ:

min
w∈Rd

[
Fθ(w) := max

π∈Pθ
F (w; pπ) +

λ

2
‖w‖2

]
, where, Pθ :=

{
π ∈ ∆N−1 : conf(pπ) ≥ θ

}
. (2)

In contrast, the vanilla FL objective optimizes F (w; ptrain), which is defined on the basis of the training distribution
ptrain. We observe that ∆-FL is designed to be robust on all test clients with conformity at least θ.

Connection to the Superquantile. The objective function of (2) brings the notion of superquantile into play. For
θ ∈ (0, 1), the (1− θ)-superquantile Sθ(Z) of a continuous random variable Z is simply its tail expectation Sθ(Z) =
E[Z | Z > Qθ(Z)], where Qθ(Z) is the (1− θ)-quantile of Z. The superquantile, also known as the conditional value
at risk (CVaR), thus quantifies the worst-case or tail behavior of a random variable Z; see Figure 2. More generally, the
following definition is applicable to both discrete and continuous random variables [66]

Sθ(Z) = min
η∈R

{
η +

1

θ
E [max{0, Z − η}]

}
.

Next, we show that the ∆-FL objective is the superquantile of a discrete random variable with the per-client losses.

Property 1. Let Z(w) be a discrete random variable which takes the value Fk(w) with probability 1/N for k =
1, . . . , N . Then, we have that Fθ(w) = Sθ(Z(w)) + (λ/2)‖w‖2.

Proof. The proof follows from the following equality, which holds due to linear programming duality:

max
π∈Pθ

N∑
k=1

πkxk = min
(η,µ)∈M

{
η +

1

θ

N∑
k=1

µk
N

}

with M = {(η, µ) ∈ R× RN+ : µk ≥ xk − η for k ∈ [N ]}.

4.2 Federated Optimization for ∆-FL
We now propose a federated optimization algorithm for the ∆-FL objective (2). While there could be many approaches
to opimizing (2), we consider algorithms similar to FedAvg for their ability to avoid communication bottlenecks and
preserve the privacy of user data.

The objective function (2) is effectively the average loss of the clients in the tail, as visualized in Figure 2. Therefore,
a natural algorithm to minimize it first evaluates the loss on all the clients, and only performs gradient updates on those
clients in the tail above the (1 − θ)-quantile. However, a practical algorithm cannot assume that all the clients are
available at a given point of time. Therefore, we perform the same operation on a subsample of clients.

Concretely, the optimization algorithm for the ∆-FL objective (2) is given in Algorithm 1. It has four steps:
(a) Model Broadcast (line 2): The server samples a set S of m clients from [N ] and sends the current model w(t).
(b) Quantile Computation and Reweighting (lines 3 and 5): Selected clients k ∈ S and the server collaborate to estimate

the (1− θ)-quantile of the losses Fk(w(t)) with differential privacy. The clients then update their weights to be
zero if their loss is smaller than the estimated quantile, and leave them unchanged otherwise. This ensures that
model updates are only aggregated from the tail clients; cf. Figure 2.

(c) Local Updates (loop of line 7): Staring from w
(t)
k,0 = w(t), each client k ∈ S makes τ local gradient or stochastic

gradient descent steps with a learning rate γ.
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Algorithm 1 The ∆-FL Algorithm

Input:
Input: Initial iterate w(0), number of communication rounds T , number of clients per round m, number of local

updates τ , local step size γ
1: for t = 0, 1, · · · , T − 1 do
2: Sample m clients from [N ] without replacement in S
3: Estimate the (1− θ)-quantile of Fk(w(t)) for k ∈ S with distributed differential privacy (Algorithm 2); call

this Q(t)

4: for each selected client k ∈ S in parallel do
5: Set π̃(t)

k = I
(
Fk(w(t)) ≥ Q(t)

)
6: Initialize w(t)

k,0 = w(t)

7: for j = 0, · · · , τ − 1 do
8: w

(t)
k,j+1 = (1− γλ)w

(t)
k,j − γ∇Fk(w

(t)
k,j)

9: end for
10: end for
11: w(t+1) =

∑
k∈S π̃

(t)
k w

(t)
k,τ/

∑
k∈S π̃

(t)
k

12: end for
13: return wT

(d) Update Aggregation (line 11): The models from the selected clients are sent to the server and aggregated to update
the server model, with weights from line 5).

Compared to FedAvg, ∆-FL has the additional step of computing the quantile and new weights π̃(t)
k for each selected

client k ∈ S in lines 3 and 5. Let us consider ∆-FL in relation to the three keys aspects of federated learning which we
introduced in Section 3.1.
(1) Communication Bottleneck: Identical to FedAvg, ∆-FL algorithm performs multiple computation rounds per

communication round.
(2) Statistical Heterogeneity: The ∆-FL objective (2) is designed to better handle the statistical heterogeneity by

minimizing the worst-case over all test distributions with conformity at least θ, while the vanilla FL objective
cannot handle non-conforming clients.

(3) Privacy: Identical to FedAvg, ∆-FL does not require any data transfer and the aggregation of line 11 can be securely
performed using secure multiparty communication. The extra step of quantile computation is also performed with
distributed differential privacy, as we describe next.

Quantile Estimation with Distributed Differential Privacy. The naïve way to compute the quantile of the per-client
losses in line 3 of Algorithm 1 is to have the clients send their losses to the server. To avoid the privacy risk of leakage
of information about the clients to the server, we compute the quantile with distributed differential privacy [36] using
the discrete Gaussian mechanism [11]. The key idea behind differential privacy [24, 25] is to ensure that the addition or
removal of the data from one client does not lead to a substantial change in the output of an algorithm. A large change
in the output would give a privacy adversary enough signal to learn about the client which was added or removed.

Our algorithm is given in Algorithm 2. All computations are performed on the ring ZM of integers modulo
M .2 Each client k first computes a local histogram xk on [0, B] based on edges 0 ≤ l0 < l1 < · · · < ln = B,
where the losses assumed to bounded as Fk(w) ∈ [0, B]. Each client then adds random discrete Gaussian3 noise
ξk ∼ NZ(0, σ2In) with scale parameter σ2, and finally sums them up using secure multiparty computation [5]. We
abstract out the details of the secure summation oracle and only require that it return the sum

(∑
k∈S xk

)
mod M

without revealing any further information to a privacy adversary.
At the end of all these steps, the server has a histogram ĥ ∈ Rn which approximates the true histogram h =

∑
k∈S xk

of per-client losses. Finally, Algorithm 2 returns the bin edge lj∗θ (ĥ) nearest to the (1− θ)-quantile of the histogram ĥ

2For ease of handling negative integers, we perform modular arithmetic over the ring {−M/2 + 1, · · · ,−1, 0, 1, 2, · · · ,M/2} rather than
{0, 1, · · · ,M − 1}.

3See Appendix B for a formal definition.

7



Algorithm 2 Quantile Computation with Distributed Differential Privacy

Input: Ring size M , set S of clients where each client k has a scalar `k ∈ [0, B], target quantile 1 − θ ∈ (0, 1),
discretization l0, l1, · · · , ln of [0, B], variance proxy σ2, scaling factor c ∈ Z+

1: Each client k computes local histogram xk =
(
I(lj−1 ≤ `k < lj)

)n
j=1

2: Each client k samples ξk ∼ NZ(0, σ2In) and sets x̃k = (cxk + ξk) mod M
3: Compute s = (

∑
k∈S x̃k) mod M securely

4: Set histogram ĥ = s/c

5: return Quantile estimate lj∗θ (ĥ) corresponding to index j∗θ (ĥ); cf. Eq. (3)

as:

j∗θ (ĥ) = arg min
j∈[n]

∣∣∣∣∣
∑j
i=1 ĥi∑n
i=1 ĥi

− (1− θ)
∣∣∣∣∣ . (3)

5 Theoretical Analysis
In this section, we analyze the convergence analysis of ∆-FL (Section 5.1) and study the differential privacy properties
of the quantile computation (Section 5.2).

5.1 Convergence Analysis
We study the convergence of Algorithm 1 with respect to the objective (2) in two cases: (i) the general non-convex case,
and, (ii) when each Fk(w) is convex.

Assumptions. We make some assumptions on the per-client losses Fk, which are assumed to hold throughout this
section. For each client k ∈ [N ], the objective Fk is

(a) B-bounded, i.e., 0 ≤ Fk(w) ≤ B for all w ∈ Rd,
(b) G-Lipschitz, i.e., |Fk(w)− Fk(w′)| ≤ G ‖w − w′‖ for all w,w′ ∈ Rd, and,
(c) L-smooth, i.e., Fk is continuously differentiable and its gradient∇Fk is L-Lipschitz.

Equivalent Algorithm. Algorithm 1 is not amenable to theoretical analysis as it is stated because the quantile function
of discrete random variables computed in line 3 is piecewise constant and discontinuous. To overcome this obstacle, we
introduce a near-equivalent algorithm in Algorithm 3, which replaces the reweighting step of Algorithm 1 (lines 3 and
lines 5) with the ideal reweighting suggested by the objective (2).

Let us start with the case of S = [N ]. Ideally, we wish the weights π(t) to achieve the maximum over π in the
objective (2). It then follows by the chain rule [69, Thm. 10.6] that

∑N
k=1 π

(t)
k ∇Fk(w(t)) ∈ ∂Fθ(w(t)), where ∂Fθ is

the regular subdifferential of Fθ. This allows us to derive convergence guarantees.
Algorithm 3 extends this intuition to the setting where only a subsample S ⊂ [N ] of clients are available in each

round. We define the counterpart of the constraint set Pθ from (2) defined on a subset S ⊂ [N ] of m clients as:

Pθ,S =

{
π ∈ ∆|S|−1 : πk ≤

1

θm
, for k ∈ S

}
, (4)

where we denote (πk)k∈S ∈ R|S| by π with slight abuse of notation. With this notation, Algorithm 3 computes the new
weights of the clients as

π(t) = arg max
π∈Pθ,S

∑
k∈S

πkFk(w(t)) .

We now analyze how close Algorithm 3 is to Algorithm 1. Let Z(w) be a discrete random variable which takes
the value Fk(w) with probability 1/N for k = 1, . . . , N , and let Qθ(Z(w)) denote its (1− θ)-quantile. The weights
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Algorithm 3 The ∆-FL Algorithm with Exact Reweighting

Input: Same as Algorithm 1
1: for t = 0, 1, · · · , T − 1 do
2: Sample m clients from [N ] without replacement in S
3: Compute π(t) = arg maxπ∈Pθ,S

∑
k∈S πkFk(w(t))

4: for each selected client k ∈ S in parallel do
5: Initialize w(t)

k,0 = w(t)

6: for j = 0, · · · , τ − 1 do
7: w

(t)
k,j+1 = (1− γλ)w

(t)
k,j − γ∇Fk(w

(t)
k,j)

8: end for
9: end for

10: w(t+1) =
∑
k∈S π

(t)
k w

(t)
k,τ

11: end for
12: return wT

π̂ ∈ ∆N−1 considered in Algorithm 1 (assuming that Q(t) is the exact quantile of {Fk(w(t)) : k ∈ S}) are given by a
hard-thresholding based on whether Fk(w) is larger than its (1− θ)-quantile:

π̃k = I
(
Fk(w) ≥ Qθ(Z(w))

)
, and, π̂k =

π̃k∑N
k′=1 π̃k′

. (5)

The objective defined by these weights is F̂θ(w) =
∑N
k=1 π̂kFk(w) + (λ/2)‖w‖2. The next proposition shows that

F̂θ(w) = Fθ(w) under certain conditions, or is a close approximation, in general.

Proposition 2. Assume F1(w) < · · · < FN (w) and let k? = dθNe. Then, we have,
(a) π? = arg maxπ∈Pθ

∑N
k=1 πkFk(w) is unique,

(b) Qθ(Z(w)) = Fk?(w),
(c) if θN is an integer, then π̂ = π? so that F̂θ(w) = Fθ(w), and,
(d) if θN is not an integer, then

0 ≤ Fθ(w)− F̂θ(w) ≤ B

θN
.

Proof. We assume w.l.o.g. that λ = 0. We apply the property that the superquantile is a tail mean (cf. Figure 2) for
discrete random variables [67, Proposition 8] to get

Fθ(w) =
1

θN

N∑
k=k?+1

Fk(w) +

(
1− bθNc

θN

)
Fk?(w) .

Comparing with (2), this gives a closed-form expression for π?, which is unique because Fk?−1(w) < Fk?(w) <
Fk?+1(w). For (b), note that Qθ(Z(w)) = inf{η ∈ R : P(Z(w) > η) ≤ θ} equals Fk?(w) by definition of k?.
Therefore, if A? = θ, π? coincides exactly with π̂. When A? 6= θ, we have

F̂θ(w) =
1

N − k? + 1

N∑
k=k?

Fk(w) .

The bound on F̂θ(w)− Fθ(w) follows from elementary manipulations together with 0 ≤ Fk(w) ≤ B.

Proposition 2 shows that when θm is an integer, Algorithm 3 is identical to Algorithm 1 where line 5 exactly
computes the quantile of the per-client losses. We record another consequence of Proposition 2, namely, that the
reweighting π(t) is sparse.

9



Remark 1. Proposition 2 shows that ∆-FL’s reweighting π(t) (line 3 of Algorithm 3) is sparse. That is, π(t)
k is non-zero

only for exactly dθme clients with the largest losses.

Bias due to Partial Participation. Note that we define the objective (2) as the maximum over all distributions in
Pθ, but Algorithm 3 only maximizes weights over a set S of m clients in each round (line 3). Therefore, the updates
performed by Algorithm 3 are not unbiased. In particular, Algorithm 3 minimizes the objective:

F θ(w) := ES∼Um [Fθ,S(w)] , where Fθ,S(w) = max
π∈Pθ,S

∑
k∈S

πkFk(w) +
λ

2
‖w‖2

is the analogue of (2) defined on a sample S ⊂ [N ] of clients, and Um is the uniform distribution over subsets of [N ] of
size m. Fortunately, the bias introduced by Algorithm 3 can be bounded as [48, Prop. 1]

sup
w∈Rd

∣∣F θ(w)− Fθ(w)
∣∣ ≤ B√

θm
. (6)

Our general strategy will be to study the convergence (near-stationarity or near-optimality) in terms of the objective F θ
which Algorithm 3 actually minimizes, and then translate that a convergence result on the original objective Fθ using
the bias bound (6).

Convergence: Nonconvex Case. We start with the convergence analysis in the nonconvex case with no regularization
(i.e., λ = 0). Since F θ is nonsmooth and nonconvex, we state the convergence guarantee in terms of the Moreau
envelope of F θ [32] following the idea of [22, 18]. Given a parameter µ > 0, we define the Moreau envelope of F θ as

Φ
µ

θ (w) = inf
z∈Rd

{
F θ(z) +

µ

2
‖w − z‖2

}
. (7)

The Moreau envelope satisfies a number of remarkable properties for µ > L [22, Lemma 4.3]. It is well-defined, and the
infimum on the right hand side admits a unique minimizer, called the proximal point of w, and denoted proxF θ/µ(w).

Second, the Moreau envelope is continuously differentiable with ∇Φ
µ

θ (w) = µ(w − proxF θ/µ(w)). Finally, the

stationary points of Φ
µ

θ and F θ coincide. Interestingly, the bound
∥∥∥∇Φ

µ

θ (w)
∥∥∥ ≤ ε directly implies a near-stationarity

on Fθ in the following variational sense: the proximal point z = proxF θ/µ(w) satisfies [22, Sec. 4.1]:
(a) z is close to w; that is, ‖z − w‖ ≤ ε/µ,
(b) z is nearly stationary on F θ; that is dist

(
0, ∂F θ(z)

)
≤ ε, where ∂F θ refers to the regular subdifferential, and,

(c) F θ is uniformly close to Fθ as per (6).
Thus, we state the convergence guarantee of our algorithm in the nonsmooth nonconvex case in terms of the Moreau
envelope Φ

µ

θ (although it never appeared in the algorithm).

Theorem 3. Let the number of rounds T be fixed and set µ = 2L. Denote ∆F0 = Fθ(w
(0)) − inf F θ. Let ŵ be

sampled uniformly at random from the sequence
(
w(0), · · · , w(T−1)) produced by Algorithm 3 with an appropriately

tuned learning rate. Then, we have,

E
∥∥∥∇Φ

µ

θ (ŵ)
∥∥∥2 ≤√∆0LG2

T
+ (1− τ−1)1/3

(
∆0LG

T

)2/3

+
∆0L

T
.

Proof. Let z(t) = proxF θ/µ(w(t)) be the proximal point of w(t). We expand out the recursion w(t+1) = w(t) −

10



γ
∑
k∈S π

(t)
k

∑τ−1
j=0 ∇Fk(w

(t)
k,j) to get

Φ
µ

θ (w(t+1)) ≤ F θ(z(t)) +
µ

2

∥∥∥z(t) − w(t+1)
∥∥∥2

= F θ(z
(t)) +

µ

2

∥∥∥z(t) − w(t)
∥∥∥2 + µγ

〈
z(t) − w(t),

∑
k∈S

π
(t)
k

τ−1∑
j=0

∇Fk(w
(t)
k,j)

〉

+
µγ2

2

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇Fk(w
(t)
k,j)

∥∥∥∥∥∥
2

= Φ
µ

θ (w(t)) + T1 + T2 .

The term T1 which carries a O(γ)-coefficient controls the rate of convergence while T2 carries a O(γ2)-coefficient and
is a noise term. The latter can be controlled by making the learning rate small. We can handle the first term T1 by
leveraging a property of F θ known as weak convexity, meaning that adding a quadratic makes it convex. In particular,
F θ + (L/2)‖·‖2 is convex, so that〈

z(t) − w(t),
∑
k∈S

π
(t)
k ∇Fk(w(t))

〉
≤ Fθ,S(z(t))− Fθ,S(w(t)) +

L

2

∥∥∥z(t) − w(t)
∥∥∥2 .

Next, we take an expectation with respect to the sampling S of clients (i.e., conditioned on F (t) = σ(w(t)), the
σ-algebra generated by w(t)). Since z(t) is independent of S (i.e., z(t) is F (t)-measurable), we get F θ on the right hand
side. Next, we use that z(t) minimizes the strongly convex right hand side of (7) to get

Et

〈
z(t) − w(t),

∑
k∈S

π
(t)
k ∇Fk(w(t))

〉
≤ −L

∥∥∥z(t) − w(t)
∥∥∥2 = − 1

4L

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2 .

This gives us a bound onA in terms of
∥∥∥∇Φ

µ

θ (w(t))
∥∥∥2. A standard argument to handle the noise termB and telescoping

the resulting inequality over t = 0, · · · , T − 1 completes the proof. The full details are given in Appendix A.1.

Convergence: Convex Case. We consider the convergence of function values in the case where each Fk is convex.
Owing to the non-smoothness of Fθ and F θ, we consider the following smoothed version of the objective in (2) and the
corresponding modification to Algorithm 3. First, define the Kullback-Leibler (KL) divergence between π ∈ ∆|S|−1

and the uniform distribution (1/|S|, · · · , 1/|S|) over S ⊂ [N ] as

DS(π) =
∑
k∈S

πk log(πk |S|) .

We simply write D(π) when S = [N ]. Inspired by [58, 2, 20], we define the smooth counterpart to (2) as

F νθ (w) = max
π∈Pθ

{
N∑
k=1

πkFk(w)− νD(π)

}
+
λ

2
‖w‖2 , (8)

where ν > 0 is a fixed smoothing parameter. We have that |F νθ (w)− Fθ(w)| ≤ 2ν logN . Finally, we modify line 3 of
Algorithm 3 to handle F νθ rather than Fθ as

π(t) = arg max
π∈Pθ,S

{∑
k∈S

πkFk(w(t))− νDS(π)

}
. (9)
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Theorem 4. Suppose each function Fk is convex and 0 < λ < L. Define a condition number κ = (L+ λ)/λ and fix a
time horizon T ≥

√
2κ3. Consider the sequence (w(t))Tt=0 of iterates produced by the Algorithm 3 with line 3 replaced

by (9). Define the averaged iterate

w(t) =

∑t
i=0 βiw

(i)∑t
i=0 βi

, where βi =

(
1− γλτ

2

)−(1+i)
,

and w? = arg minw∈Rd Fθ(w). Then, with appropriate tuning of the learning rate γ and smoothing parameter ν, we
have the bound

EFθ(w(T ))− Fθ(w?) ≤ λ‖w(0) − w?‖2 exp

(
− T√

2κ3

)
+
G2

λT
+
G2κ2

λT 2
+

B√
θm

,

where we hide absolute constants and factors polylogarithmic in the problem parameters T,G, λ, κ.

Remark 2 (About the Rate). As soon as T & κ3/2 (ignoring constants and polylog factors), we achieve the optimal
rate of 1/(λT ) rate of strongly convex stochastic optimization up to the bias B/

√
θm.

Further, the bias B/
√
θm due to partial participation can be controlled by choosing the cohort size m large enough.

In the experiments of Section 7, we obtain meaningful numerical results when m is around 50 or 100 and θ around 1/2,
indicating that the worst-case bound (6) can be pessimistic.

Proof Sketch of Theorem 4. We start with some additional notation. We absorb the regularization into the client losses
to define F̃k(w) = Fk(w) + (λ/2)‖w‖2. Now, consider the smoothed counterpart of (2) on a subset S ⊂ [N ] with a
smoothing parameter ν > 0 as

F νθ,S(w) = max
π∈Pθ,S

{∑
k∈S

πkF̃k(w)− νDS(π)

}
.

It follows from the properties of smoothing [58, 2] and composition rules that F νθ,S is L′-Lipschitz, where L′ is as
defined the statement of the theorem. Finally, let Ft denote the sigma algebra generated by w(t) and let Et[·] := E[·|Ft].

We start the proof with the decomposition

‖w(t+1) − w‖2 = ‖w(t) − w‖2 − 2γ
∑
k∈S

π
(t)
k

τ−1∑
j=0

〈∇F̃k(w
(t)
k,j , w

(t) − w〉+ γ2

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇F̃k(w
(t)
k,j)

∥∥∥∥∥∥
2

,

where w is arbitrary. We bound the inner product term using the λ-strong convexity and L-smoothness of F̃k. We
bound the third term by using the variance bound of [48, Prop. 2] as

ES∼Um

∥∥∥∥∥∑
k∈S

π
(t)
k ∇Fk(w(t))−∇F νθ (w(t))

∥∥∥∥∥
2

≤ 8G2

θm
,

where Um is the uniform distribution over subsets S ⊂ [N ] of sizem, and F
ν

θ (w) := ES∼UmF νθ,S(w) as the expectation
of F νθ,S over random subsets S ∼ Um. Putting these together and taking w = w? := arg minF

ν

θ gives the inequality,

F
ν

θ (w(t))− F νθ (w?) ≤ 16G2γτ

θn
+

9(L+ λ)2

λτ
d(t) (10)

+
1

γτ

(
1− λγτ

2

)
‖w(t) − w?‖2 − 1

γτ
Et‖w(t+1) − w?‖2 ,

where d(t) is the client drift term, defined as

d(t) := ES∼Um

∑
k∈S

π
(t)
k

τ−1∑
j=0

‖w(t)
k,j − w(t)‖2

∣∣∣∣∣∣Ft
 .
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Note that d(t) = 0 if τ = 1, so d(t) is the bias from making multiple local gradient steps on each client. This term can
be bounded in terms of the left-hand side again using smoothness and the variance bound as

d(t) ≤ c γ2τ2(τ − 1)
(
G2 + L′

(
F
ν

θ (w(t))− F νθ (w?)
))

.

The final missing piece is a bound which allows us to translate statements about convergence of F
ν

θ in terms of
convergence of Fθ. We achieve this using the bias bound of (6) together with approximation error of smoothing.
Summing (10) with weights as required by w(T ) with Jensen’s inequality, and using (i) the bound on the client drift
d(t), (ii) the bound on the bias, (iii) optimizing the choice of the learning rate and smoothing coefficient give the final
statement of the theorem. The details are provided in Appendix A.2.

5.2 Privacy Analysis
We now analyze the privacy and utility of Algorithm 2.

First, recall the definition of zero-concentrated differential privacy [9]: a randomized algorithm A satisfies (1/2)ε2-
concentrated differential privacy if the Rényi α-divergence Dα(A(X)‖A(X ′)) ≤ αε2/2 for all α ∈ (0,∞) and all
sequences X,X ′ of inputs which differ by the addition or removal of the data of one client.

Intuitively, the addition or removal of the data contributed by one client should not change the output distribution
of the randomized algorithm by much, as measured by the Rényi divergence. A smaller value of ε implies a stronger
privacy guarantee. This notion of differential privacy can be translated back-and-forth with the usual one, cf. [11].

Error Criterion. We approximate the (1−θ)-quantile of {`1, · · · , `N} by the quantile of a histogram h = (h1, · · · , hn)

of client losses with individual entries hj =
∑N
k=1 I(lj−1 ≤ `k < lj), where the bin edges 0 = l0 < l1 < · · · < ln = B

are given. The bin edge lj corresponding to index j ∈ [n] approximates the (1− θ)-quantile well if h1 + · · ·+ hj ≈
(1− θ)(h1 + · · ·+ hn). We measure this error of approximation by the difference between the two sides. Formally, we
define the error Rθ(h, j) of approximating the (1− θ)-quantile of histogram h ∈ Rn with index j ∈ [n] by

Rθ(h, j) =

∣∣∣∣∣
∑j
i=1 hi∑n
i=1 hi

− (1− θ)
∣∣∣∣∣ . (11)

We define the best achievable error R∗θ(h) for estimating the (1− θ)-quantile of histogram h and the best approximating
index j∗(h) as

R∗θ(h) = min
j∈[n]

Rθ(h, j) , and j∗θ (h) = arg min
j∈[n]

Rθ(h, j) , (12)

where we assume ties are broken in an arbitrary but deterministic manner. Lastly, we define the quantile error ∆θ(h, ĥ)

of estimating the quantile of h from that of ĥ as

∆θ(ĥ, h) = Rθ
(
h, j∗θ (ĥ)

)
.

Essentially, if the index j∗θ (ĥ) computed from the estimate ĥ corresponds to the (1 − θ′)-quantile of h, the quantile
error satisfies ∆θ(h, ĥ) = |θ − θ′|.
Privacy and Utility Analysis. We now analysis the differential privacy bound of Algorithm 2 as well as the error in
the quantile computation.

Theorem 5. Fix a δ > 0. Suppose that σ ≥ 1/2 and c > 0 are given, and and the modular arithmetic is performed on
base M ≥ 2 + 2cN + 2N

√
2σ2 log(4Nn/δ). Then we have the following with probability at least 1− δ:

(a) Algorithm 2 satisfies (1/2)ε2-concentrated DP with

ε = min

{√
c2

Nσ2
+
ψn

2
,

c√
Nσ

+ ψ
√
n

}
,

where ψ = 10
∑N−1
i=1 exp

(
− 2π2σ2i/(i+ 1)

)
≤ 10(N − 1) exp(−2π2σ2).
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(b) The quantile error of histogram ĥ returned by Algorithm 2 is at most

∆θ(ĥ, h) ≤ R∗θ(ĥ)

(
1 +

√
2σ2n

c2N
log

4

δ

)
+ (2− θ)

√
2σ2n

c2N
log

4

δ
,

where R∗θ(ĥ) is the error in the estimation of (1− θ)-quantile of histogram ĥ.

Let us interpret the result. The effective noise scale is σ/c. Since the dominant term of the privacy error is
ε ≈ c/(σ

√
N), we choose σ/c ≈ (ε

√
N)−1, so that the algorithm satisfies (1/2)ε2-concentrated DP. The role of c is

to avoid degeneracy of the discrete Gaussian as σ → 0. In particular, the theorem requires σ ≥ 1/2. The error ∆θ(ĥ, h)
is (ignoring constants and log factors)

∆θ(ĥ, h) . R∗θ(ĥ)

(
1 +

√
n

εN

)
+ (1 + ρ)

√
n

εN
.

If we take σ = O(1) and c = O(ε
√
N), we require M & N3/2, ignoring constants and log factors.

Proof. Define the event

Emod =

N⋂
k=1

n⋂
j=1

{
−M − 2

2N
≤ cxk,j + ξk,j ≤

M − 2

2N

}
. (13)

Note that under Emod, no modular wraparound occurs in the algorithm, i.e., x̃k = cxk + ξk and ĥ =
∑N
k=1

x̃k
c =∑n

k=1

(
xk + ξk

c

)
. We assume that Emod holds throughout.

The analysis of the privacy follows from the sensitivity of the sum query. Namely, let X = (x1, · · · , xN ) be a
sequence and define A(X) =

∑N
k=1 cxk as the (rescaled) sum query. In our case, each xi is a canonical basis vector

since it is a local histogram constructed from a single scalar. Algorithm 2 adds discrete Gaussian noise to the sum query
to make it differentially private. That is, we get the randomized algorithm A(X) = A(X) +

∑N
k=1 ξk. It was shown in

[36, Corollary 12] that A(X) is approximately distributed as NZ(A(X), Nσ2), so a desired privacy guarantee follows
from that of the discrete Gaussian mechanism [11]. In particular, for two sequences X and X ′ differing by the addition
or removal of a single basis vector x′, we have that

Dα(A(X)‖A(X ′)) ≈ Dα(NZ(A(X), Nσ2)‖NZ(A(X ′), Nσ2)) =
αc2

2Nσ2
.

A rigorous analysis of the error, following the recipe of [36] leads to the first part of the theorem; the details can be
found in Appendix B.

For the second part, we analyze the quantile error. Define N̂ =
∑n
j=1 ĥj , as the analogue to N =

∑n
j=1 hj and

shorthand ρ = 1− θ. We bound the quantile error as

∆θ

(
ĥ, h

)
=

∣∣∣∣∣∣ 1

N

j∗θ (ĥ)∑
j=1

hj − ρ

∣∣∣∣∣∣
≤ 1

N

∣∣∣∣∣∣
j∗θ (ĥ)∑
j=1

hj − ĥj

∣∣∣∣∣∣+
1

N

∣∣∣∣∣∣
j∗θ (ĥ)∑
j=1

ĥj − N̂ρ

∣∣∣∣∣∣+
ρ

n

∣∣∣N̂ −N ∣∣∣
≤ max

i∈[n]

1

cN

∣∣∣∣∣∣
i∑

j=1

N∑
k=1

ξk,j

∣∣∣∣∣∣+

(
1 +
|N̂ −N |

N

)
R∗θ(ĥ) +

ρ

N

∣∣∣N̂ −N ∣∣∣ .
Let us define an event Esum under which we can bound each of the terms to get the desired bound:

Esum =

{
max
j∈[n]

∣∣∣ j∑
i=1

N∑
k=1

ξk,i

∣∣∣ ≤√2σ2Nn log(4/δ)

}
. (14)
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Finally, it remains to bound the probability of Emod and Esum. This can be achieved using standard concentration
arguments, which we defer to Appendix B.

6 Discussion
We discuss connections of ∆-FL to risk measures and fair resource allocation.

Connection to Risk Measures. The framework of risk measures in economics and finance formalizes the notion of
minimizing the worst-case cost over a set of distributions [26, 68, 27]. The superquantile Sθ(·) is a special case of a
risk measure. The ∆-FL framework, which minimizes the superquantile of the per-client losses (Property 1), can be
extended to other risk measures M by minimizing the objective

FM (w) := M(Z(w)) +
λ

2
‖w‖2 ,

where Z(w) is a discrete random variable which takes value Fk(w) with probability αk for k ∈ [N ]. Another example
of a risk measure is the entropic risk measure, which is defined as Mν

ent(Z) = E[exp(νZ)]/ν where ν ∈ R+ is a
parameter. The analogue of ∆-FL with the entropic risk minimizes

F νent(w) =
1

ν
log

(
N∑
k=1

αk exp
(
νFk(w)

))
+
λ

2
‖w‖2 .

This objective F νent(w) coincides with the one studied recently in [52] under the name Tilted-ERM subsequent to the
first presentation of this work [44]. Finally, we note that F νent is also related to the smoothed objective F νθ from (8) as
the limit

F νent(w) = lim
θ→0

F νθ (w) ,

where we extend the definition D(π) =
∑N
k=1 πk log(πk/αk) as the KL divergence between π and α for unequal αk’s.

Maximin Strategy for Resource Allocation. We would like to point out an interesting analogy between distributional
robustness and proportional fairness. The superquantile-based objective in Eq. (2) is a maximin-type objective that is
reminiscent of maximin objectives used in load balancing and network scheduling [41, 75, 60].

We can draw an analogy between the two worlds, federated learning and resource allocation resp., by identifying
errors to rates and clients to users. The maximin fair strategy to resource allocation seeks to treat all users as fairly as
possible by making their rates as large and as equal as possible, so that no rate can be increased without sacrificing
other rates that are smaller or equal [60].

Our superquantile-based ∆-FL framework builds off the maximin decision theoretic foundation to frame an
objective that we optimize with respect to parameters of models, and this, iteratively, over multiple rounds of client-
server communication, while preserving privacy of each client.

This compositional nature of our problem, where we optimize a composition (in the mathematical sense) of
a maximin-type objective and a loss function and model predictions is a difference with resource allocation in
communication networks. Further explorations of the analogy are left for future work.

Model Family and Conformity Levels θ. Using a single global value of the conformity level θ for all clients could
fail to balance supporting clients with low conformity with fitting the population. On the other hand, measuring the
conformity of clients requires transfer of user data, a violation of privacy. To circumvent this issue, we use a similar
idea to the one of [51] where a family of models is trained simultaneously for various levels, and each test client can
then tune its conformity.

7 Experiments
In this section, we demonstrate the effectiveness of ∆-FL in handling heterogeneity in federated learning. Our
experiments were implemented in Python using automatic differentiation provided by PyTorch while the data was
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Table 1: Dataset description and statistics.

Task Dataset #Classes Devices #Data per client
Median Max

Image Recognition EMNIST 62 1730 179 447
Sentiment Analysis Sent140 2 877 69 549

preprocessed using LEAF [10]. The code to reproduce our experiments can be found online.4 We start by describing
the datasets, tasks and models in Section 7.1. We present numerical comparisons to several recent works – we list them
in Section 7.2 and present the experimental results in Section 7.3. Finally, we demonstrate that ∆-FL provides the most
favorable tradeoff between average error and the error on nonconforming clients in Section 7.4. Full details regarding
the experiments as well as additional results are provided in the supplementary material.

7.1 Datasets, Tasks and Models
We consider two learning tasks. The dataset and task statistics are summarized in Table 1.
(a) Character Recognition: We use the EMNIST dataset [15], where the input x is a 28 × 28 grayscale image of a

handwritten character and the output y is its label (0-9, a-z, A-Z). Each client is a writer of the character x. The
weight αk assigned to author k is the number of characters written by this author. We train both a linear model and
a convolutional neural network architecture (ConvNet). The ConvNet consists in two 5×5 convolutional layers
with max-pooling followed by one fully connected layer. Outputs are vectors of scores with respect to each of the
62 classes. The multinomial logistic loss is used to train both models.

(b) Sentiment Analysis: We use the Sent140 dataset [29] where the input x is a tweet and the output y = ±1 is its
sentiment. Each client is a distinct Twitter user. The weight αk assigned to user k is the number of tweets publised
by this user. We train both a logistic regression and a Long-Short Term Memory neural network architecture
(LSTM). The LSTM is built on the GloVe embeddings of the words of the tweet [33]. The hidden dimension of the
LSTM is same as the embedding dimension, i.e., 50. We refer to the latter as “RNN”. The loss used to train both
models is the binary logistic loss.

7.2 Algorithms and Hyperparameters
We list here the recent works we perform numerical comparisons with and discuss their hyperparameters.

Algorithms. As discussed in Section 3, a federated learning method is characterized by the objective function as well
as the federated optimization algorithm. We consider two methods optimizing the vanilla FL objective: FedAvg [54]
and FedProx [50]. The latter augments FedAvg with a proximal term for more stable optimization. We compare to
one more variant of FedAvg. Note that ∆-FL the weight π(t) (see line 3 of Algorithm 3) is sparse, i.e., it is non-zero
for only some of the m selected clients, cf. Proposition 2. This is equivalent to a fewer number of effective clients
per round, which is θm on average. We use as baseline FedAvg with θm clients per round, where m is the number of
clients per round in ∆-FL; we call it FedAvg-Sub.

We also consider two heterogeneity-aware objectives: Tilted-ERM [52], which is the analogue of ∆-FL with the
entropic risk measure (cf. Section 6) and AFL [57], whose objective is obtained as the limit limθ→0 Fθ(w) of the ∆-FL
objective. We also consider q-FFL [51], which raises the per-client loss Fk to the (q + 1)th power, for some q > 0. We
optimize q-FFL and Tilted-ERM with the federated optimization algorithms proposed in their respective papers. We use
q-FFL with q = 10 in place of AFL, as it found to have more stable convergence with similar performance.

Hyperparameters. We fix the number of clients per round to be m = 100 for each dataset-model pair with the
exception of Sent140-RNN, for which we use m = 50. We fixed an iteration budget for each dataset during which

4https://github.com/krishnap25/simplicial-fl
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Table 2: 90th percentile of the distribution of misclassification error (in %) on the test devices. Each entry is the mean
over five random seeds while the standard deviation is reported in the subscript. The boldfaced/highlighted entries
denote the smallest value for each dataset-model pair.

EMNIST Sent140
Linear ConvNet Linear RNN

FedAvg 49.660.67 28.461.07 46.830.54 49.673.95

FedAvg-Sub 50.280.77 27.570.81 46.600.38 46.943.84

FedProx 49.150.74 27.011.86 46.830.54 49.864.07

q-FFL 49.900.58 28.020.80 46.390.40 48.664.68

Tilted-ERM 48.590.62 25.461.49 46.690.49 46.543.27

AFL 51.620.28 45.081.00 47.520.32 57.781.19

∆-FL, θ = 0.8 49.100.24 26.231.15 46.440.38 46.464.39

∆-FL, θ = 0.5 48.440.38 23.690.94 46.640.41 50.488.24

∆-FL, θ = 0.1 50.340.95 25.462.77 51.391.07 86.4510.95

FedAvg converged. We tuned a learning rate schedule using grid search to find the smallest terminal loss averaged
over training clients for FedAvg. The same iteration budget and learning rate schedule were used for all other methods
including ∆-FL. Each method, except FedAvg-Sub, selected m clients per round for training, as specified earlier. The
regularization parameter λ, and the proximal weight of FedProx were tuned to minimize the 90th percentile of the
misclassification error on a held-out subset of training clients. We run q-FFL for q ∈ {10−3, 10−2, . . . , 10} and report
q with the smallest 90th percentile of misclassification error on test clients. We run Tilted-ERM with a temperature
parameter ν ∈ {0.1, 0.5, 1, 5, 10, 50, 100, 200} and also report ν with the smallest 90th percentile of misclassification
error on test clients. We optimize ∆-FL with Algorithm 3 for conformity θ ∈ {0.8, 0.5, 0.1}.

7.3 Experimental Results
We measure in Table 2 the 90th percentile of the misclassification error across the test clients, as a measure of the
right tail of the per-client performance. We also measure in Table 3 the mean error, which measures the average test
performance. Our main findings are summarized below.

∆-FL consistently achieves the smallest 90th percentile error. ∆-FL achieves a 3.3% absolute (12% relative)
improvement over any vanilla FL objective on EMNIST-ConvNet. Among the heterogeneity aware objectives, ∆-
FL achieves 1.8% improvement over the next best objective, which is Tilted-ERM. We note that q-FFL marginally
outperforms ∆-FL on Sent140-Linear, but the difference 0.05% is much smaller than the standard deviation across runs.

∆-FL is competitive at multiple values of θ. For EMNIST-ConvNet, ∆-FL with θ ∈ {0.5, 0.8} is better in 90th

percentile error than all other methods we compare to, and ∆-FL with θ = 0.1 is tied with Tilted− ERM , the next
best method. We also empirically confirm that ∆-FL interpolates between FedAvg (θ → 1) and AFL (θ → 0).

∆-FL works best for larger values of conformity levels. We observe that ∆-FL with θ = 0.1 is unstable for Sent140-
RNN. This is consistent with Theorem 4, which requires m to be much larger than 1/θ (cf. Remark 2). Indeed, this can
be explained by ∆-FL’s sparse re-weighting, which only gives non-zero weights to θm = 5 clients on average in each
round (cf. Remark 1).

∆-FL is yet competitive in terms of average error. Perhaps surprisingly, ∆-FL actually gets the best test error
performance on EMNIST-ConvNet and Sent140-Linear. This suggests that the average test distribution is shifted
relative to the average training distribution pα. In the other cases, we find that the reduction in mean error is small
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Table 3: Mean of the distribution of misclassification error (in %) on the test devices. Each entry is the mean over five
random seeds while the standard deviation is reported in the subscript. The boldfaced/highlighted entries denote the
smallest value for each dataset-model pair.

EMNIST Sent140
Linear ConvNet Linear RNN

FedAvg 34.380.38 16.640.50 34.750.31 30.160.44

FedAvg-Sub 34.510.47 16.230.23 34.470.03 29.860.46

FedProx 33.820.30 16.020.54 34.740.31 30.200.48

q-FFL 34.340.33 16.590.30 34.480.06 29.960.56

Tilted-ERM 34.020.30 15.680.38 34.700.31 30.040.25

AFL 39.330.27 33.010.37 35.980.08 37.740.65

∆-FL, θ = 0.8 34.490.26 16.090.40 34.410.22 30.310.33

∆-FL, θ = 0.5 35.020.20 15.490.30 35.290.25 33.592.44

∆-FL, θ = 0.1 38.330.48 16.371.03 37.790.89 51.9811.81

relative to the gains in the 90th percentile error compared to Vanilla FL methods.

Minimizing superquantile loss over all clients performs better than minimizing worst error over all clients.
Specifically, AFL which aims to minimize the worst error among all clients, as well as other objectives which
approximate it (∆-FL with θ → 0, q-FFL with q →∞, Tilted-ERM with ν → 0) tend to achieve poor performance.
We find that AFL achieves the highest error both in terms of 90th percentile and the mean. ∆-FL offers a more nuanced
and more effective approach via the constraint set conf(pπ) ≥ θ than the straight pessimistic approach minimizing the
worst error among all clients.

7.4 Exploring the Trade-off Between Average and Tail Error
We visualize in Figures 3 and 4 the distribution of test errors to explore the trade-off various methods provide between
the average error and the error on nonconforming clients.

∆-FL yields improved prediction on non-conforming clients. This can be observed from the histogram of ∆-FL in
Figure 3, which exhibits thinner tails than FedAvg or Tilted-ERM. We see that the vanilla FL objective of FedAvg
sacrifices performance on the nonconforming clients. Tilted-ERM does improve over FedAvg in this regard, but ∆-FL
has a thinner right tail than Tilted-ERM, showing a better handling of heterogeneity.

∆-FL yields improved prediction on data-poor clients. We observe in Figure 4 that Tilted-ERM and q-FFL mainly
improve the performance on data-rich clients, that is clients with lots of data. On the other hand, ∆-FL gives a greater
reduction in misclassification error on data-poor clients, that is clients with little data (< 200 examples per client).

8 Conclusion
We present the ∆-FL framework that operates with heterogeneous clients while still guaranteeing a minimal level
of predictive performance to each individual client. We model the similarity between client data distributions using
the conformity, which is a scalar summary of how closely a client conforms to the population. ∆-FL relies on a
superquantile-based objective, parameterized by the conformity, to minimize the tail statistics of the prediction errors
on the client data distributions. We present a federated optimization algorithm compatible with secure aggregation,
which interleaves client reweighting steps with federated averaging steps. We derive finite time convergence guarantees
that cover both convex and non-convex settings. Experimental results on federated learning benchmarks demonstrate

18



0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

EMNIST
= 0.5

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

EMNIST
= 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Sent140

= 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sent140
= 0.8

FedAvg Tilted-ERM -FL 10th percentile Mean Value 90th percentile

Figure 3: Histogram of misclassification error on test clients for the EMNIST-ConvNet and Sent140-RNN.
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Figure 4: Scatter plots of misclassification error on test clients against its data size for the EMNIST-ConvNet.

superior performance of ∆-FL over state-of-the-art baselines on the upper quantiles of the error on test clients, with
particular improvements on data-poor clients, while being competitive on the mean error.
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A Convergence Analysis
Below, we restate and prove Theorem 3 as Theorem 6 in Appendix A.1 and Theorem 4 as Theorem 7 in Appendix A.2,

A.1 Convergence Analysis: Non-convex Case
We review some definitions of subdifferentials and weak convexity before we get to the main theorem.

Nonconvex Subdifferentials. We start by recalling the definition of subgradients for nonsmooth functions (in finite
dimension), following the terminology of [69]. Consider a function ψ : Rd → R ∪ {+∞} and a point w̄ such that
ψ(w̄) < +∞. The regular (or Fréchet) subdifferential of ψ at w̄ is defined by

∂ψ(w̄) =
{
s ∈ Rd : ψ(w) ≥ ψ(w̄) + 〈s, w − w̄)〉+ o(‖w − w̄‖)

}
.

The regular subdifferential thus corresponds to the set of gradients of smooth functions that are below ψ and coincide
with it at w̄. These notions generalize (sub)gradients of both smooth functions and convex functions: it reduces to the
singleton {∇ψ(w̄)} when ψ is smooth and to the standard subdifferential from convex analysis when ψ is convex.

Weak Convexity. We recall the notion of weak convexity, which is one way of characterizing functions which are
“close” to convex. A function ψ : Rd → R is said to be η-weakly convex if the function w 7→ ψ(w) + (η/2)‖w‖2
is convex [59]. The class of weakly convex functions includes all convex functions (with η = 0) and all L-smooth
functions (with η = L).

Weak convexity also admits an equivalent first-order condition: for any w, z ∈ Rd and s ∈ ∂ψ(w), we have,

ψ(z) ≥ ψ(w) + 〈s, z − w〉 − η

2
‖z − w‖2 . (15)

Weak convexity will feature in our developments in two ways:
• In our case, both Fθ as well as Fθ,S are L-weakly convex, since each can be written as the maximum of a family of
L-smooth functions [22, Lemma 4.2].

• The prox operator for weakly convex function is well-defined. Let ψ be a η-weakly convex function. Its proximal or
prox operator, with parameter µ > 0 is defined as

proxψ/µ(w) = arg min
z

{
ψ(z) +

µ

2
‖w − z‖2

}
.

It is well-defined (i.e., the argmin exists and is unique) for µ > η, since the function inside the argmin is (µ− η)-
strongly convex.

In nonsmooth and nonconvex optimization of weakly convex functions, we are interested in finding stationary points
w.r.t. the regular subdifferential, i.e., points w satisfying 0 ∈ ∂ψ(w). A natural measure of near-stationarity is, therefore,

dist(0, ∂ψ(w)) = inf
s∈∂ψ(w)

‖s‖ .

Moreau Envelope. Given a parameter µ > 0, we define the Moreau envelope of F θ as

Φ
µ

θ (w) = inf
z

{
F θ(z) +

µ

2
‖w − z‖2

}
.

The Moreau envelope is well-defined since F θ is bounded from below by our assumptions. We will use two standard
properties of the Moreau envelope:

• Since F θ,S is L-weakly convex, we have that its Moreau envelope Φ
µ

θ (w) is continuously differentiable for µ > L
with

∇Φ
µ

θ (w) = µ
(
w − proxF θ/µ(w)

)
.

• The stationary points of Φ
µ

θ and F θ coincide and inf Φ
µ

θ = inf F θ for µ > L.

1



• We have for all µ > 0 that Φ
µ

θ (w) ≤ F θ(w).

Notation. Let S = S(t) denote the random set of clients selected in round t of Algorithm 3. We define

∇̃Fθ,S(w(t)) =
∑
k∈S

π
(t)
k ∇Fk(w(t)) , (16)

where π(t)
k ∈ arg maxπ∈Pθ,S

∑
k∈S πkFk(w(t)) is selected as in line 3 of Algorithm 3. A key consequence of the chain

rule [69, Thm. 10.6] is

∇̃Fθ,S(w(t)) ∈ ∂Fθ,S(w(t)) . (17)

Convergence Analysis. We now state and prove the convergence result in the nonconvex case.

Theorem 6. Fix and the number of rounds T , fix µ = 2L and set the learning rate

γ =

{
1

4τL
,

1

τ
√
T

√
∆F0

LG2
,

1

τT 1/3

(
∆F0

32LG2(1− τ−1)

)1/3
}
,

where we denote ∆F0 = Φ
µ

θ (w(0)) − inf Φ
µ

θ ≤ F θ(w
(0)) − inf F θ. Let ŵ be sampled uniformly at random from

{w(0), · · · , w(T−1)}. Ignoring absolute constants, we have the bound,

E
∥∥∥∇Φ

µ

θ (ŵ)
∥∥∥2 ≤√∆F0LG2

T
+

(
∆F0LG(1− τ−1)1/2

T

)2/3

+
∆F0L

T
.

Proof. We start with some notation. Throughout, we denote z(t) as the proximal point of w(t):

z(t) = proxF θ/µ(w(t)) = arg min
z

{
F θ(z) +

µ

2

∥∥∥z − w(t)
∥∥∥2} .

Let F (t) denote the sigma algebra generated by w(t) and define Et[·] = E[· | F (t)]. By definition, we have that z(t) is
also F (t)-measurable.

We use the update w(t+1) = w(t) − γ∑k∈S π
(t)
k

∑τ−1
j=0 ∇Fk(w

(t)
k,j) to get

Φ
µ

θ (w(t+1)) = min
z

{
F θ(z) +

µ

2

∥∥∥z − w(t+1)
∥∥∥2}

≤ F θ(z(t)) +
µ

2

∥∥∥z(t) − w(t+1)
∥∥∥2

= F θ(z
(t)) +

µ

2

∥∥∥z(t) − w(t)
∥∥∥2 + µγ

〈
z(t) − w(t),

∑
k∈S

π
(t)
k

τ−1∑
j=0

∇Fk(w
(t)
k,j)

〉
+
µγ2

2

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇Fk(wk,j)
(t))

∥∥∥∥∥∥
2

= Φ
µ

θ (w(t)) + µγ

〈
z(t) − w(t),

∑
k∈S

π
(t)
k

τ−1∑
j=0

∇Fk(w
(t)
k,j)

〉
︸ ︷︷ ︸

=:T1

+
µγ2

2

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇Fk(w
(t)
k,j)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=:T2

.
(18)

We handle both T1 and T2 separately. We start with T1 by defining

Cj :=

〈
z(t) − w(t),

∑
k∈S

π
(t)
k

(
∇Fk(w

(t)
k,j)−∇Fk(w(t))

)〉
.

2



We use the weak convexity of Fθ,S , in particular (15), to bound〈
z(t) − w(t) ,

∑
k∈S

π
(t)
k ∇Fk(w

(t)
k,j)

〉
=

〈
z(t) − w(t),

∑
k∈S

π
(t)
k ∇Fk(w(t))

〉
+ Cj

(16)
=
〈
z(t) − w(t), ∇̃Fθ,S(w(t))

〉
+ Cj

(15),(17)
≤ Fθ,S(z(t))− Fθ,S(w(t)) +

L

2

∥∥∥z(t) − w(t)
∥∥∥2 + Cj .

Taking an expectation conditioned on F (t) and noting that z(t) is F (t)-measurable (so the expectation is only over the
randomness in S), we get

Et

〈
z(t) − w(t),

∑
k∈S

π
(t)
k ∇Fk(w

(t)
k,j)

〉

≤
(
F θ(z

(t)) +
µ

2

∥∥∥z(t) − w(t)
∥∥∥2)+ F θ(w

(t))− µ− L
2

∥∥∥z(t) − w(t)
∥∥∥2 + Et[Cj ] .

Note that the function
h(z) := F θ(z) +

µ

2

∥∥∥z − w(t)
∥∥∥2

is (µ− L)-strongly convex and z(t) is its minimizer. This gives,

h(w(t))− h(z(t)) ≥ µ− L
2

∥∥∥z(t) − w(t)
∥∥∥2 .

This implies,

Et

〈
z(t) − w(t),

∑
k∈S

π
(t)
k ∇Fk(w

(t)
k,j)

〉
≤ −(µ− L)

∥∥∥z(t) − w(t)
∥∥∥2 + Et[Cj ] .

Next, we bound the term Cj as follows:

|Cj | =
∣∣∣∣∣
〈
z(t) − w(t),

∑
k∈S

π
(t)
k

(
∇Fk(w

(t)
k,j)−∇Fk(w(t))

)〉∣∣∣∣∣
≤ µ− L

2

∥∥∥z(t) − w(t)
∥∥∥2 +

1

2(µ− L)

∥∥∥∥∥∑
k∈S

π
(t)
k

(
∇Fk(w

(t)
k,j)−∇Fk(w(t))

)∥∥∥∥∥
2

≤ µ− L
2

∥∥∥z(t) − w(t)
∥∥∥2 +

1

2(µ− L)

∑
k∈S

π
(t)
k

∥∥∥(∇Fk(w
(t)
k,j)−∇Fk(w(t))

)∥∥∥2
≤ µ− L

2

∥∥∥z(t) − w(t)
∥∥∥2 +

L2

2(µ− L)

∑
k∈S

π
(t)
k

∥∥∥w(t)
k,j − w(t)

∥∥∥2 .
Together with the previous inequality and the equality∇Φ

µ

θ (w(t)) = µ(w(t) − z(t)), we get a bound on T1 as

Et[T1] ≤ −γτ(µ− L)

2µ

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2 +

µγL2

2(µ− L)
d(t) , (19)

where d(t) =
∑
k∈S

∑τ−1
j=0 π

(t)
k

∥∥∥w(t)
k,j − w(t)

∥∥∥2 is the client drift. Next, we bound T2 as

T2 =
µγ2

2

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇Fk(w
(t)
k,j)

∥∥∥∥∥∥
2

≤ µγ2τ

2

∑
k∈S

π
(t)
k

τ−1∑
j=0

∥∥∥∇Fk(w
(t)
k,j)
∥∥∥2

≤ µγ2τ2G2

2
, (20)

3



where we used Jensen’s inequality and
∥∥∥∇Fk(w

(t)
k,j)
∥∥∥2 ≤ G2 since Fk is G-Lipschitz.

Next, we plug in (19) and (20) into (18) and invoke Proposition 12 to bound the client drift d(t) to get

Et
[
Φ
µ

θ (w(t+1))
]
≤ Φ

µ

θ (w(t))− γτ(µ− L)

2

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2 +

µγ2τ2G2

2

(
1 +

8L2γ

µ− L (τ − 1)

)
.

Finally, taking an unconditional expectation, summing this up over t = 0 to T − 1 and rearranging gives us the bound

E
∥∥∥∇Φ

µ

θ (ŵ)
∥∥∥2 ≤ 2∆F0

γτT
+ 2γτLG2 (1 + 8Lγ(τ − 1)) ,

where we plugged in µ = 2L. Plugging in the choice of γ (cf. Lemma 15) completes the proof.

A.2 Convergence Analysis: Strongly Convex Case
The main result is the following.

Theorem 7 (Convergence rate, Strongly Convex Case). Suppose that each Fk is convex and the regularization
parameter satisfies 0 < λ < L. Define notation κ = (L + λ)/λ, w? = arg minw Fθ(w) and ∆0 = ‖w(0) − w?‖2.
Assume also that the number of rounds is T ≥

√
2κ3. Fix a smoothing parameter

ν =


G2

λκ , if T ≤
√

2κ3 log
(

1 ∨ CT 2

κ2

)
,

2G2κ2

λT 2 log
(

1 ∨ CT 2

κ2

)
, if

√
2κ3 log

(
1 ∨ CT 2

κ2

)
≤ T ≤ κ2 log

(
1 ∨ CT 2

κ2

)
,

2G2

λT log (1 ∨ CT ) , else,

where C = λ2∆0/(2G
2 logm), and a learning rate

γ = min

{ √
λ

18τ(L+ λ)
√
L′
,

1

4τL′
,

1

λτT
log

(
1 ∨ λ

2∆0θm

G2
T

)
,

1

λτT
log2

(
1 ∨ λ2∆0T

2

G2κ2(1− τ−1)
T

)}
,

where L′ = L+ λ+G2/ν. Consider the sequence (w(t))Tt=0 produced by Algorithm 3 run with smoothing parameter
ν and learning rate γ, and the corresponding averaged iterate

w(T ) :=

∑T
t=0 w

(t)
(

1− λγτ
2

)−(1+t)
∑T
r=0

(
1− λγτ

2

)−(1+r) .

Then, ignoring absolute constants, we have the bound,

E
[
Fθ(w

(T ))− Fθ(w?)
]
≤ λ‖w(0) − w?‖2 exp

(
−T/
√

2κ3
)

+
B√
θm

+
G2

λT

(
1

θm
+ logm

)
log

(
1 ∨ λ

2∆0T

G2

)
+
G2κ2

λT 2

(
1− τ−1 + logm

)
log2

(
1 ∨ λ

2∆0T
2

G2κ2

)
.

We give the proof in a sequence of results. We start with some notation.

Notation. We define the client drift as

d(t) := ES∼Um

∑
k∈S

π
(t)
k

τ−1∑
j=0

‖w(t)
k,j − w(t)‖2

∣∣∣∣∣∣Ft
 . (21)

4



We define the averaged superquantile as

F
ν

θ (w) = ES∼Um [F νθ,S(w)] , (22)

where Um is the uniform distribution over subsets of [N ] of size m. Finally, let w? = arg minw F
ν

θ (w).

Effect of One Round. The crux of the proof of Theorem 7 is the following statement.

Proposition 8. Consider the setting of Theorem 7. Let (w(t))t≥0 the sequence of global models generated by Algo-
rithm 3. For any t ≥ 0, we have:

F
ν

θ (w(t))− F νθ (w?) ≤ 1

γτ

(
1− λγτ

2

)
‖w(t) − w?‖2 − 1

γτ
‖w(t+1) − w?‖2 +

16τG2γ

θm
+

9 (L+ λ)
2

τλ
d(t) ,

where d(t) denotes the client drift, defined in (21).

Proof. We denote Et[·] := E[· | Ft]. We expand the update w(t+1) = w(t) − γ∑k∈S π
(t)
k

∑τ−1
j=0 ∇F̃k(w

(t)
k,j) to get

Et‖w(t+1) − w?‖2 = ‖w(t) − w?‖2 − 2γEt

∑
k∈S

π
(t)
k

τ−1∑
j=0

〈
∇F̃k(w

(t)
k,j), w

(t) − w?
〉

︸ ︷︷ ︸
=:A

+ γ2Et

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇F̃k(w
(t)
k,j)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=:B

.

Let us first bound A. We use λ-strong convexity (cf. (28)) of the functions F̃k to get〈∑
k∈S

π
(t)
k ∇F̃k(w

(t)
k,j), w

(t) − w?
〉

=

〈∑
k∈S

π
(t)
k ∇F̃k(w(t)), w(t) − w?

〉

+

〈∑
k∈S

π
(t)
k

(
∇F̃k(w

(t)
k,j)−∇F̃k(w(t))

)
, w(t) − w?

〉

≥ F νθ,S(w(t))− F νθ,S(w?) +
λ

2
‖w(t) − w?‖2

−
∣∣∣∣∣
〈∑
k∈S

π
(t)
k

(
∇F̃k(w

(t)
k,j)−∇F̃k(w(t))

)
, w(t) − w?

〉∣∣∣∣∣ .
Next, using successively the triangle inequality, the Cauchy-Schwartz inequality and (L+ λ)-smoothness of the F̃k
yields:∣∣∣∣∣

〈∑
k∈S

π
(t)
k

(
∇F̃k(w

(t)
k,j)−∇F̃k(w(t))

)
, w(t) − w?

〉∣∣∣∣∣ ≤∑
k∈S

π
(t)
k

∣∣∣〈∇F̃k(w
(t)
k,j)−∇F̃k(w(t)), w(t) − w?

〉∣∣∣
≤
∑
k∈S

π
(t)
k

∥∥∥∇F̃k(w
(t)
k,j)−∇F̃k(w(t))

∥∥∥ ∥∥∥w(t) − w?
∥∥∥

≤
∑
k∈S

π
(t)
k (L+ λ)

∥∥∥w(t)
k,j − w(t)

∥∥∥∥∥∥w(t) − w?
∥∥∥ .
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Finally, using 2|ab| ≤ a2/c2 + c2b2 and the convexity of t 7→ t2,∣∣∣∣∣
〈∑
k∈S

π
(t)
k

(
∇F̃k(w

(t)
k,j)−∇F̃k(w(t))

)
, w(t) − w?

〉∣∣∣∣∣
≤ 4

λ

(∑
k∈S

π
(t)
k (L+ λ) ‖w(t)

k,j − w(t)‖
)2

+
λ

4
‖w(t) − w?‖2

≤ λ

4
‖w(t) − w?‖2 +

4 (L+ λ)
2

λ

∑
k∈S

π
(t)
k ‖w

(t)
k,j − w(t)‖2 .

Overall, we bound A as

A ≥ 2γ Et

[
τ−1∑
j=0

(
F νθ,S(w(t))− F νθ,S(w?) +

λ

4
‖w(t) − w?‖2 − 4 (L+ λ)

2

λ

∑
k∈S

π
(t)
k ‖w

(t)
k,j − w(t)‖2

)]

≥ 2γτ
(
F
ν

θ (w(t))− F νθ (w?)
)

+
λγτ

2
‖w(t) − w?‖2 − 8γ (L+ λ)

2

λ
d(t) ,

where we use the definition of d(t) from (21). We bound B using Proposition 13. Putting these together, we get,

Et‖w(t+1) − w?‖2 ≤
(

1− λγτ

2

)
‖w(t) − w?‖2 − (2γτ − 4γ2τ2L′)(F

ν

θ (w(t))− F νθ (w?))

+
16τ2G2γ2

θm
+ 2

(
γ2τ (L+ λ)

2
+ 4γ

(L+ λ)
2

λ

)
d(t) .

With γ ≤ (4τL′)−1 we have 2γτ − 4γ2τ2L′ ≥ γτ . Likewise, the same condition on γ also implies 2(γ (L+ λ)
2

+

4(L+ λ)
2
/(τλ)) ≤ 9 (L+ λ)

2
/(τλ). Rearranging completes the proof.

Proof of Theorem 7. We are now ready to prove the theorem.

Proof of Theorem 7. Plugging in the client drift bound of Proposition 12 into the bound of Proposition 8 and rearranging,
we get(

1− 18L′ (L+ λ)
2
τ2γ2e2

λ

)(
F
ν

θ (w(t))− F νθ (w?)
)
≤

1

γτ

(
1− λγτ

2

)
‖w(t) − w?‖2 − 1

γτ
Et‖w(t+1) − w?‖2 +

16τG2γ

θm
+

9G2 (L+ λ)
2
τ2γ2e2

λ

(
4 +

8

θm

)
.

Since 36e2 ≤ 182 for γ ≤
√
λ(18τ (L+ λ)

√
L′)−1, we have 18L′ (L+ λ)

2
τ2γ2e2/λ ≤ 1

2 which implies:

F
ν

θ (w(t))− F νθ (w?) ≤ 2

γτ

(
1− λγτ

2

)
‖w(t) − w?‖2 − 2

γτ
Et‖w(t+1) − w?‖2

+
32τG2γ

θm
+

18G2 (L+ λ)
2
τ2γ2e2

λ

(
4 +

8

θm

)
︸ ︷︷ ︸

=:T1

.

Next, we use convexity to get

E
[
F
ν

θ (w(T ))− F νθ (w?)
]
≤ 1∑T

t=0

(
1− λγτ

2

)−(1+t) T∑
t=0

(
1− λγτ

2

)−(1+t)
E
[
F
ν

θ (w(t))− F νθ (w?)
]

6



so that telescoping the sum yields

E
[
F
ν

θ (w(T ))− F νθ (w?)
]
≤ 2

∥∥w(0) − w?
∥∥2

γτ
∑T
t=0

(
1− λγτ

2

)−(1+t) + T1 .

Now, we can lower bound the denominator with

T∑
t=0

(
1− λγτ

2

)−(1+t)
≥ 1

γτλ
eTγτλ ,

to get the bound

E
[
F
ν

θ (w(T ))− F νθ (w?)
]
≤ 2λe−Tγτλ‖w(0) − w?‖2 + T1 . (23)

It remains to translate the results on F
ν

θ into Fθ. For the left hand side, we use the bias bound of Property 9. For the
right hand side, we use the λ-strong convexity of Fθ and Property 9 we have:

‖w(0) − w?‖2 ≤ 2‖w(0) − w?‖2 + 2‖w? − w?‖2

≤ 2‖w(0) − w?‖2 +
4

λ
(Fθ(w

?)− Fθ(w?))

≤ 2‖w(0) − w?‖2 +
4

λ

(
Fθ(w

?)− F νθ (w?) + F
ν

θ (w?)− F νθ (w?) + F
ν

θ (w?)− Fθ(w?)
)

≤ 2‖w(0) − w?‖2 +
4

λ

(
2B√
θm

+ 4 ν logm

)
,

since F
ν

θ (w?)− F νθ (w?) ≤ 0. Plugging this into (23) gives us the bound

E
[
Fθ(w

(T ))− Fθ(w?)
]
≤ 4λ‖w(0) − w?‖2e−Tγτλ +

32τG2γ

θm
+

18G2 (L+ λ)
2
τ2γ2e2

λ

(
4 +

8

θm

)
+

(
2B√
θm

+ 2 ν logm

)(
1 + 8e−Tγτλ

)
.

Hyperparameter Optimization. To complete the proof from here, it remains to optimize the learning rate γ and the
smoothing parameter ν. We invoke Lemma 14 to optimize for γ. Ignoring absolute constants, this gives us the bound

E
[
Fθ(w

(T ))
]
− Fθ(w?) ≤ λ∆0 exp(−λτΓT ) +

G2

θmλT
log

(
1 ∨ λ

2∆0Tθm

G2

)
+
G2κ2

λT 2
(1− τ−1) log2

(
1 ∨ λ

2∆0T
2

G2κ2

)
+

B√
θm

+ ν logm,

where we take

Γ = min

{ √
λ

18τ(L+ λ)
√
L′
,

1

4τL′
,

}
Next, we set ν. The two terms that depend on ν are

λ∆0 exp(−λτΓT ) + ν logm = λ∆0 exp

− T(
κ+ G2

λν

)
∨ κ
√
κ+ G2

λν

+ ν logm

≤ λ∆0 max

{
exp

(
−λνT
G2

)
, exp

(
−T
κ

√
λν

2G2

)}
+ ν logm.
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Assume now that ν ≤ 2G2/(λκ2), so the first term in the max is active. The conditions of Lemma 14 are met since
T ≥ 2κ is assumed; that gives us the choice

ν =
G2

λκ
∧ 2G2

λT
log

(
1 ∨ λ2∆0T

2G2 logm

)
,

so that the error is bounded by

λ∆0 exp

(
− T

2κ

)
+

2G2

λT
log(m) log

(
1 ∨ λ2∆0T

2G2 logm

)
.

Likewise, if ν > 2G2/(λκ2), the second term inside the max is active. The conditions of Lemma 14 are met since
T ≥

√
2κ3 is assumed. That gives us the choice

ν ≤ G2

λκ
∧ 2G2κ2

λT 2
log2

(
1 ∨ λ2∆0T

2

2G2κ2 logm

)
,

so that the error is bounded by

λ∆0 exp

(
− T√

2κ3

)
+

2G2κ2

λT 2
log(m) log2

(
1 ∨ λ2∆0T

2

2G2κ2 logm

)
.

Plugging in these choices completes the proof.

A.3 Intermediate Results
We present some prerequisites and some intermediate results which are required in the convergence proofs of both the
convex and nonconvex cases.

Note that for any S ⊂ [N ] of size m, the partial superquantile is differentiable at w with :

∇F νθ,S(w) =
∑
k∈S

π?k∇F̃k(w) (24)

where π? denotes solution to the maximization

F νθ,S(w) = max
π∈Pθ,S

∑
k∈S

πkF̃k(w)− ν DS(π)

Bias and variance of the partial superquantile. We use the partial superquantile defined on a subset S ⊂ [N ] to
approximate the full superquantile. We start with the quality of this approximation.

Property 9. Let Um denote the uniform distribution over all subsets of [N ] of size m. For any w ∈ Rd, we have∣∣∣F νθ (w)− Fθ(w)
∣∣∣ ≤ B√

θm
+ 2 ν logm,

ES∼Um
∥∥∥∇F νθ,S(w)−∇F νθ (w)

∥∥∥2 ≤ 8G2

θm
.

Smoothing and smoothness constants. The following result is standard [2, Theorem 4.1, Lemma 4.2].

Property 10. For every ν > 0, we have that F νθ,S and F
ν

θ,S are L′-smooth with L′ = L+ λ+ G2

ν .

Bounding Gradient Dissimilarity. Bounding of the variance of gradient estimators is a key assumption in the analysis
of stochastic gradients methods (see e.g. the textbook [7]). In the centralized setting, when a stochastic objective

8



Eξ[f(w, ξ)], it is standard to assume for a given estimator gw of ∇wE [f(w, ξ] that there exists some constants
M1,M2 > 0 such that for all w ∈ Rd,

‖E [gw]‖2 ≤M1 or ‖E [gw]‖2 ≤M1 +M2 ‖∇wE [f(w, ξ]‖2 .

In the federated setting, the use of a subset S ⊂ [N ] of clients in each round induces noise on the estimation of the
average gradient over the whole network. Thus, such assumption translates into a bound on the gradient dissimilarity
among the clients [38, 80]:

1

N

∑
k∈[N ]

∥∥∥∇F̃k(w)
∥∥∥2 ≤M1 +M2

∥∥∥∥∥∥ 1

N

∑
k∈[N ]

∇F̃k(w)

∥∥∥∥∥∥
2

.

In this work, we also consider the minimization of the global loss F νθ by a stochastic algorithm based on a partial
participation of the clients in the network, with the additional difficulties that we only have access to a biased estimator
F
ν

θ of the loss F νθ and its gradient. In particular, the adaptive reweighting of the clients selected at each round does not
permit the direct use of such assumption. We show instead in the next lemma that the variance of stochastic gradient
estimator can also be bounded, thanks to the Lipschitz assumption.

Proposition 11 (Gradient Dissimilarity). Consider the quantities π(t), w(t) from Algorithm 3. We have,

E

[∑
k∈S

π
(t)
k

∥∥∥∇F̃k(w(t))
∥∥∥2 ∣∣∣∣∣Ft

]
≤
(

4 +
8

θm

)
G2 +

∥∥∥∇F νθ (w(t))
∥∥∥2 .

Proof. We drop the superscript t throughout this proof. By centering the second moment (cf. (27)), we have:∑
k∈S

πk

∥∥∥∇F̃j(w)
∥∥∥2 =

∑
k∈S

πk

∥∥∥∇F̃k(w)−∇F νθ,S(w)
∥∥∥2 +

∥∥∇F νθ,S(w)
∥∥2

=
∑
k∈S

πk

∥∥∥∥∥(∇Fk(w)−
∑
i∈S

πi∇Fi(w))

∥∥∥∥∥
2

+
∥∥∇F νθ,S(w)

∥∥2 .
Now since the weights πk sum to one, we may use the convexity of ‖·‖2 to get:∑

k∈S

πk

∥∥∥∇F̃j(w)
∥∥∥2 ≤ ∑

k,i∈S

πkπi ‖∇Fi(w)−∇Fk(w)‖2 +
∥∥∇F νθ,S(w)

∥∥2 .
The squared triangle inequality (cf. (26)) together with the Lipschitz assumption on the functions Fk yields:∑

k∈S

πk

∥∥∥∇F̃k(w)
∥∥∥2 ≤ 2

∑
k,i∈S

πkπi

(
‖∇Fk(w)‖2 + ‖∇Fi(w)‖2

)∥∥∇F νθ,S(w)
∥∥2

≤ 4 G2 +
∥∥∇F νθ,S(w)

∥∥2 .
Thus, taking an expectation over S ∼ Um gives

E

[∑
k∈S

πk

∥∥∥∇F̃j(w)
∥∥∥2 ∣∣∣∣∣Ft

]
≤ 4 G2 + ES∼Um

[∥∥∇F νθ,S(w)
∥∥2] .

By centering (cf. (27)), we get,

E

[∑
k∈S

πk

∥∥∥∇F̃k(w)
∥∥∥2 ∣∣∣∣∣Ft

]
≤ 4 G2 +

∥∥∥∇F νθ (w)
∥∥∥2 + E

[∥∥∥∇F νθ,S(w)−∇F νθ (w)
∥∥∥2 ∣∣∣∣Ft] . (25)

Finally, substituting the variance bound from Lemma 9 into (25) yields the stated result.
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Bounding the Client Drift. During federated learning, each client takes multiple local steps. This causes the resulting
update to be a biased estimator of a descent direction for the global objective. This phenomenon has been referred to as
“client drift” [53, 38]. Current proof techniques rely on treating this as a “noise” term which is to be controlled. In the
context of this work, the reweighting by π(t) requires us to adapt this typical definition of client drift to our setting. In
particular, recall that we define the client drift d(t) in outer iteration t of the algorithm as

d(t) := ES∼Um

∑
k∈S

π
(t)
k

τ−1∑
j=0

‖w(t)
k,j − w(t)‖2

∣∣∣∣∣∣Ft
 .

Proposition 12 (Client Drift). If γ ≤ 1
4τ(L+λ) , we have the following bounds for any t ≥ 0:

d(t) ≤ τ2(τ − 1)γ2e2
((

4 +
8

θm

)
G2 + ‖∇F νθ (w(t))‖2

)
and,

d(t) ≤ τ2(τ − 1)γ2e2
((

4 +
8

θm

)
G2 + 2L′

(
F
ν

θ (w(t))− F νθ (w?)
))

.

Furthermore, if λ = 0, we have the bound

d(t) ≤ 8τ2(τ − 1)γ2G2 .

The last bound also works without smoothing, i.e., ν = 0.

Proof. If τ = 1, there is nothing to prove as both sides of the inequality are 0. We assume now that τ > 1. Let us first
fix S ⊂ [N ] of size |S| = m. For any k ∈ S and j ∈ {1, . . . , τ − 1}, by the squared triangle inequality (cf. (26)), we
have: ∥∥∥w(t)

k,j − w(t)
∥∥∥2 =

∥∥∥w(r)
k,j−1 − γ∇F̃k(w

(t)
k,j−1)− w(t)

∥∥∥2
≤
(

1 +
1

τ − 1

)∥∥∥w(t)
k,j−1 − w(t)

∥∥∥2 + τγ2
∥∥∥∇F̃k(w

(t)
k,j−1)

∥∥∥2 .
The squared triangle inequality (cf. (26)) together with the smoothness of the local losses gives:∥∥∥w(t)

k,j − w(t)
∥∥∥2≤(1 +

1

τ − 1

)∥∥∥w(t)
k,j−1 − w(t)

∥∥∥2 + 2τγ2
(∥∥∥∇F̃k(w

(t)
k,j−1)−∇F̃k(w(t))

∥∥∥2 +
∥∥∥∇F̃k(w(t))

∥∥∥2)
≤
(

1 +
1

τ − 1

)∥∥∥w(t)
k,j−1 − w(t)

∥∥∥2 + 2τγ2 (L+ λ)
2
∥∥∥w(t)

k,j−1 − w(t)
∥∥∥2 + 2τγ2

∥∥∥∇F̃k(w(t))
∥∥∥2 .

Hence, for γ ≤ 1
4τ(L+λ) , we get:∥∥∥w(t)

k,j − w(t)
∥∥∥2 ≤ (1 +

2

τ − 1

)∥∥∥w(t)
k,j−1 − w(t)

∥∥∥2 + 2τγ2
∥∥∥∇F̃k(w(t))

∥∥∥2 .
Unrolling this recursion yields for any j ≤ τ − 1∥∥∥w(t)

k,j − w(t)
∥∥∥2 ≤ j−1∑

i=0

(
1 +

2

τ − 1

)i(
2τγ2

∥∥∥∇F̃k(w(t))
∥∥∥2)

≤ τ − 1

2

(
1 +

2

τ − 1

)j (
2τγ2

∥∥∥∇F̃k(w(t))
∥∥∥2)

≤ τ − 1

2

(
1 +

2

τ − 1

)τ−1(
2τγ2

∥∥∥∇F̃k(w(t))
∥∥∥2)

≤ τ(τ − 1)γ2e2
∥∥∥∇F̃k(w(t))

∥∥∥2 ,
10



where we use (1 + 1/x)x ≤ e for any x > 0. If λ = 0 we have that
∥∥∥∇F̃k(w(t))

∥∥∥2 =
∥∥∇Fk(w(t))

∥∥2 ≤ G2 since Fk
is G-Lipschitz; this gives us the final bound in the statement. When λ 6= 0, this does not hold. In this case, we apply
Lemma 11 to get

d(t) ≤ τ2(τ − 1)γ2e2 ES∼Um

[∑
k∈S

π
(t)
k

∥∥∥∇F̃k(w(t))
∥∥∥2 ∣∣∣∣∣F (t)

]

≤ τ2(τ − 1)γ2e2
((

4 +
8

θm

)
G2 +

∥∥∥∇F νθ (w(t))
∥∥∥2) .

This gives the first bound. The second bound follows from the first by smoothness (cf. (29)).

Bound on the Norm of Each Update. We bound the expected squared norm of each update w(t+1) − w(t), which has
the closed form expression:

w(t+1) − w(t) = −γ
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇F̃k(w
(t)
k,j) .

Proposition 13. We have the bounds,

γ2E


∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇F̃k(w
(t)
k,j)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Ft


≤ 2γ2τ (L+ λ)
2
d(t) +

16τ2γ2G2

θm
+ 2τ2γ2

∥∥∥∇F νθ (w(t))
∥∥∥2

≤ 2γ2τ (L+ λ)
2
d(t) +

16τ2γ2G2

θm
+ 4τ2γ2L′

(
F
ν

θ (w(t))− F νθ (w?)
)
,

where d(t) is the client drift term defined in (21).

Proof. Using the the squared triangle inequality (cf. Eq. (26)) together with the gradient formula (24), we get:∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇F̃k(w
(t)
k,j)

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

(
∇F̃k(w

(t)
k,j)−∇F̃k(w(t))

)∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∑
k∈S

π
(t)
k

τ−1∑
j=0

∇F̃k(w(t))

∥∥∥∥∥∥
2

≤ 2τ
∑
k∈S

π
(t)
k

τ−1∑
j=0

∥∥∥∇F̃k(w
(t)
k,j)−∇F̃k(w(t))

∥∥∥2 + 2τ2
∥∥∥∇F νθ,S(w(t))

∥∥∥2 .

For the first term, we invoke (L+ λ)-smoothness of F̃k and take an expectation to get 2τ(L+ λ)2d(t). For the second
term, we use centering (cf. Eq. (27)) followed by the variance bound of Lemma 9 to get:

Et
[∥∥∥∇F νθ,S(w(t))

∥∥∥2] = Et

∥∥∥∥∥∑
k∈S

π
(t)
k ∇F̃k(w(t))−∇F νθ (w(t))

∥∥∥∥∥
2
+

∥∥∥∇F νθ (w(t))
∥∥∥2

≤ 8G2

θm
+
∥∥∥∇F νθ (w(t))

∥∥∥2 .
This gives the first bound. The second bound follows from the first by smoothness (cf. Eq. (29)).
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A.4 Useful Inequalities and Technical Results
We recall a few standard inequalities:

• Squared Triangle inequality: For any x, y ∈ Rd and α > 0 we have:

‖x+ y‖2 ≤ (1 + α) ‖x‖2 +

(
1 +

1

α

)
‖y‖2 . (26)

• Centering the second moment: For any Rd-valued random vector X such that E‖X‖2 <∞,

E‖X‖2 = E‖X−E [X]‖2 + ‖E [X]‖2 (27)

• Strong convexity: Let F : Rd → R be µ-strongly convex. Then for any x, y ∈ Rd, we have:

〈∇F (x), x− y〉 ≥ F (x)− F (y) +
µ

2
‖x− y‖2 (28)

• Smoothness: Let F : Rd → R be L-smooth and let F ? be the minimum value of F (assuming it exists). Then for
any x ∈ Rd, we have:

‖∇F (x)‖2 ≤ 2L (F (x)− F ?) (29)

Lemma 14. Consider the map ϕ : (0,Γ]→ R+ given by

ϕ(γ) = A exp(−γT ) +Bγ + Cγ2 ,

where Γ, A,B,C > 0 are given. If T > 1/Γ, then, we have,

ϕ(γ?) ≤ A exp(−ΓT ) +
B

T
+
B

T
log

(
1 ∨ AT

B

)
+

C

T 2
+

C

T 2
log2

(
1 ∨ AT

2

C

)
,

where γ? is given by

γ? = min

{
Γ,

1

T
log

(
1 ∨ AT

B

)
,

1

T
log

(
1 ∨ AT

2

C

)}
.

Proof. Define γ1 = T−1 log(1∨AT/B) and γ2 = T−1 log(1∨AT 2/C). If γ? = Γ, we have that Γ ≤ γ1 and Γ ≤ γ2
so that

ϕ(γ?) = A exp(−ΓT ) +BΓ + CΓ2 ≤ A exp(−ΓT ) +Bγ1 + Cγ22 .

Now suppose that γ? = γ1 so that γ1 ≤ γ2. Then, we have,

ϕ(γ?) = A exp(−γ1T ) +Bγ1 + Cγ21 ≤
B

T
+
B

T
log(1 ∨AT/B) + Cγ22 .

The third case is identical to the second.

The proof of the next lemma is elementary and is omitted.

Lemma 15. Consider the map ϕ : (0,Γ]→ R+ given by

ϕ(γ) =
A

γT
+Bγ + Cγ2 ,

where Γ, A,B,C > 0 are given. Then, we have,

ϕ(γ?) ≤ A

ΓT
+ 2

(
AB

T

)1/2

+ 2

(
AC

T

)2/3

,

where γ? is given by

γ? = min

{
Γ,

√
A

BT
,C1/3

(
A

T

)1/3
}
.
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B Privacy Analysis

B.1 Preliminaries
The discrete Gaussian mechanism was introduced in [11] as an extension of the Gaussian mechanism to integer data. A
random variable ξ is said to satisfy the discrete Gaussian distribution with mean µ and variance proxy σ2 if

P(ξ = i) = C exp

(
− (i− µ)2

2σ2

)
for all i ∈ Z ,

where C is an appropriate normalizing constant. We denote it by NZ(µ, σ2). We need the following property of the
discrete Gaussian.

Property 16. Let ξ be distributed according to NZ(µ, σ2). Then, E[ξ] = µ. Furthermore, if µ = 0, then ξ is
sub-Gaussian with variance proxy σ2, i.e., E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0.

B.2 Proof of Privacy and Utility of Quantile Computation
Proof of Theorem 5. We start by defining and controlling the probabilities of some events. Throughout, let δ > 0 be
fixed. Define the event

Emod =

N⋂
k=1

n⋂
j=1

{
−M − 2

2N
≤ γxk,j + ξk,j ≤

M − 2

2N

}
. (30)

Note that under Emod, no modular wraparound occurs in the algorithm, i.e., x̃k = γxk + ξk and

ĥ =

N∑
k=1

x̃k
γ

=

N∑
k=1

(
xk +

ξk
γ

)
.

We assume that Emod holds throughout.

Privacy Analysis. We start by establishing the sensitivity of the sum query over xk’s as 1. Define the input space X to
be the canonical basis vectors in Rn, i.e., the set of all vectors in {0, 1}n with only one 1, and let X ∗ = ∪∞N=1 denote
the set of all sequences of elements of X . We consider the rescaled sum query A((x1, · · · , xN )) =

∑N
k=1 γxN . The

L2 sensitivity S(A) of this query A is supremum over all X ∈ X ∗ and X ′ which is obtained by concatenating x′ to X:

S(A) = sup
X,X′

‖A(X)−A(X ′)‖2 = sup
x′∈X

γ ‖x′‖2 = γ .

We invoke the privacy bound of sums of discrete Gaussians (Lemma 19) to claim that an algorithm A returning
A(x) +

∑N
k=1 ξk satisfies (1/2)ε2-concentrated DP where ε is as in the theorem statement. The fact that the quantile

and all further functions of it remains private follows from the post-processing property of DP (also known as the
data-processing inequality).

Utility Analysis. Define N̂ =
∑n
j=1 ĥj , as the analogue to N =

∑n
j=1 hj . Below, we use shorthand ρ = 1− θ. We

bound the quantile error as

∆θ

(
ĥ, h

)
= Rθ

(
h, j∗θ (ĥ)

)
=

∣∣∣∣∣∣ 1

N

j∗θ (ĥ)∑
j=1

hj − ρ

∣∣∣∣∣∣
≤ 1

N

∣∣∣∣∣∣
j∗θ (ĥ)∑
j=1

hj − ĥj

∣∣∣∣∣∣+
1

N

∣∣∣∣∣∣
j∗θ (ĥ)∑
j=1

ĥj − N̂ρ

∣∣∣∣∣∣+
ρ

n

∣∣∣N̂ −N ∣∣∣
≤ max
j′∈[n]

1

γN

∣∣∣∣∣∣
j′∑
j=1

N∑
k=1

ξk,j

∣∣∣∣∣∣+

(
1 +
|N̂ −N |

N

)
R∗θ(ĥ) +

ρ

N

∣∣∣N̂ −N ∣∣∣ .
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Let us define an event Esum under which the first term and last terms are bounded:

Esum =

max
j∈[n]

∣∣∣ j∑
j′=1

N∑
k=1

ξk,j′
∣∣∣ ≤√2σ2Nn log(4/δ)

 . (31)

Under Esum, we also have

|N − N̂ | = 1

γ

∣∣∣∣∣∣
n∑
j=1

N∑
k=1

ξk,j

∣∣∣∣∣∣ ≤
√

2σ2Nn

γ
log

4

δ
.

Plugging this back into ∆ρ(ĥ, h) gives us the desired bound, provided Esum holds.

Bounding the Failure Probability. The algorithm fails when at least one of Emod or Esum fail to hold. We have from
Claim 17 that P(Emod) ≥ 1 − δ/2 and from Claim 18 that P(Esum) ≥ 1 − δ/2. With a union bound, we get that
P(Esum ∩ Eprod) ≥ 1− δ, i.e., the algorithm succeeds with probability at least 1− δ.

We state and prove bounds on probabilities of the events Emod, Esum defined above.

Claim 17. If M ≥ 2 + 2γN + 2N
√

2σ2 log(4Nn/δ), then P(Emod) ≥ 1− δ/2.

Proof. Each discrete Gaussian random variable ξk,j is centered and sub-Gaussian with variance proxy σ2 (cf. Prop-
erty 16). A Cramér-Chernoff bound (cf. Lemma 20) gives us the exponential tail bound

P
(
|ξk,j | >

√
2σ2 log(4Nn/δ)

)
≤ δ

2Nn
.

Using a union bound for k ∈ [N ], j ∈ [n] and xk,j ∈ {0, 1} completes the proof.

Claim 18. We have that P(Esum) ≥ 1− δ/2.

Proof. Each discrete Gaussian random variable ξk,j is centered and sub-Gaussian with variance proxy σ2, i.e., E[ξk,j ] =

0 and E[exp(λξk,j)] ≤ exp(λ2σ2/2) for all λ ∈ R (cf. Property 16). Therefore, ζj :=
∑N
k=1 ξk,j is centered and

sub-Gaussian with variance proxy nσ2, since E[ζj ] = 0, and

E[exp(λζj)] =

N∏
k=1

E[exp(λξk,j)] ≤ exp(λ2σ2N/2)

by independence. We get a bound on the partial sums from Lemma 21; this involves constructing a martingale
(
∑j
j′=1 ζj′)

n
j=1 and applying the maximal inequality. The bound we get is

P

max
j∈[n]

∣∣∣ j∑
j′=1

ζj′
∣∣∣ > t

 ≤ exp

(
− t2

2σ2Nn

)
.

Plugging in t =
√

2σ2Nn log(2/δ) completes the proof.

B.3 Useful Results
The distributed discrete Gaussian mechanism gets privacy guarantees by adding a sum of discrete Gaussian random
variables. We give a bound in its privacy. The following lemma is due to [36].

Lemma 19 (Privacy of Sum of Discrete Gaussians). Fix σ ≥ 1/2. Let M be a deterministic algorithm with `2-
sensitivity S. Define a randomized algorithm A, which when given an input x, samples ξ1, · · · , ξn ∼ NZ(0, σ2Id) and
returns A(x) +

∑n
i=1 ξi. Then, A satisfies ε2/2-concentrated DP with

ε = min

{√
S

nσ2
+
ψd

2
,
S√
nσ

+ ψ
√
d

}
,

where ψ = 10
∑n−1
k=1 exp

(
− 2π2σ2k/(k + 1)

)
≤ 10(n− 1) exp(−2π2σ2).
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Next, we record two standard concentration results.

Lemma 20 (Cramér-Chernoff). Let ξ be a real-valued and centered sub-Gaussian random variable with variance
proxy σ2, i.e., E[ξ] = 0 and E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0. Then, we have for any t > 0,

P(|ξ| > t) ≤ 2 exp

(
− t2

2σ2

)
.

Lemma 21 (Maximal Inequality). Let ξ1, ξ2, · · · be i.i.d. centered sub-Gaussian random variables with variance proxy
σ2, i.e., E[ξj ] = 0 and E[exp(λξj)] ≤ exp(λ2σ2/2) for all λ ∈ R and j = 1, 2, · · · . Then, it holds for any t > 0 and
integer n ≥ 1 that

P

max
k∈[n]

∣∣∣ k∑
j=1

ξt

∣∣∣ > t

 ≤ 2 exp

(
− t2

2σ2n

)
.

C Numerical Experiments: Complete Results
We conduct our experiments on two datasets from computer vision and natural language processing. These datasets
contain a natural, non-iid split of data which is reflective of data heterogeneity encountered in federated learning. In this
section, we describe in details the experimental setup and the results. Here is its outline:

• Appendix C.1 describes the datasets and tasks.

• Appendix C.2 presents the algorithm and the hyperparameters used.

• Appendix C.3 details the evaluation methodology.

• Appendix C.4 gives the experimental comparison of ∆-FL to baselines.

Since each client has a finite number of datapoints in the examples below, we let its probability distribution πk to be
the empirical distribution over the available examples, and the weight αk to be proportional to the number of datapoints
available on the client.

C.1 Datasets and Tasks
We use the two following datasets, described in detail below. The data was preprocessed using LEAF [10].

EMNIST for handwritten-letter recognition.

Dataset. EMNIST [15] is a character recognition dataset. This dataset contains images of handwritten digits or letters,
labeled with their identification (a-z,A-Z, 0-9). The images are grey-scaled pictures of 28× 28 = 784 pixels.

Train and Test Devices. Each image is also annotated with the “writer” of the image, i.e., the human subject who
hand-wrote the digit/letter during the data collection process. Each client corresponds to one writer. From this set of
clients, we discard all clients containing less than 100 images. The remaining clients were partitioned into two groups —
1730 training and 1730 testing clients. For each experiment we subsampled 865 training and 865 testing clients for
computational tractability, where the sampled clients vary based on the random seed of each experiment.

Model. We consider the following models for this task.

• Linear Model: We use a linear softmax regression model. In this case each Fk is convex. We train parameters
w ∈ R62×784. Given an input image x ∈ R784, the score of each class c ∈ [62] is the dot product 〈wc, x〉. The
probability pc assigned to each class is then computed as a softmax: pc = exp 〈wc, x〉/

∑
c′ exp 〈wc′ , x〉. The

prediction for a given image is then the class with the highest probability.
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• ConvNet: We also consider a convolutional neural network with two convolutional layers with max-pooling and
one fully connected layer (F.C) of which outputs a vector in R62. The outputs of the ConvNet are scores with
respect to each class. They are also used with a softmax operation to compute probabilities.

The loss used to train both models is the multinomial logistic loss L(p, y) = − log py where p denotes the vector
of probabilities computed by the model and py denotes its yth component. In the convex case we add a quadratic
regularization term of the form (λ/2)‖w‖22.

Sent140 for Sentiment Analysis.

Dataset. Sent140 [29] is a text dataset of 1,600,498 tweets produced by 660,120 Twitter accounts. Each tweet is
represented by a character string with emojis redacted. Each tweet is labeled with a binary sentiment reaction (i.e.,
positive or negative), which is inferred based on the emojis in the original tweet.

Train and Test Devices. Each client represents a twitter account and contains only tweets published by this account.
From this set of clients we discarded all clients containing less that 50 tweets, and split the 877 remaining clients rest
of clients into a train set and a test set of sizes 438 and 439 respectively. This split was held fixed for all experiments.
Each word in the tweet is encoded by its 50-dimensional GloVe embedding [62].

Model. We consider the following models.

• Linear Model: We consider a l2-regularized linear logistic regression model where the parameter vector w is of
dimension 50. In this case, each Fk is convex. We summarize each tweet by the average of the GloVe embeddings
of the words of the tweet.

• RNN: The nonconvex model is a Long Short Term Memory (LSTM) model [33] built on the GloVe embeddings of
the words of the tweet. The hidden dimension of the LSTM is same as the embedding dimension, i.e., 50. We refer
to it as “RNN”.

The loss function is the binary logistic loss.

C.2 Algorithms and Hyperparameters

Algorithm and Baselines.
The proposed ∆-FL is run for three values of θ ∈ {0.8, 0.5, 0.1}. We compare it to the following baselines:

• FedAvg [54]: It is the de facto standard for the vanilla federated learning objective.

• FedAvg, θ: We also consider FedAvg with a random client subselection step: local updates are run on a fraction of
the initial number of clients randomly selected per round. For each dataset, we try three values of, corresponding
to the average number of clients selected by ∆-FL for the three values of θ used. In the main paper, we report as
FedAvg-Sub the performance of FedAvg, θ with θ ∈ {0.8, 0.5, 0.1} which gives the best performance on ∆-FL
(i.e., lowest 90th percentile of test misclassification error). Here we report numbers for all values of θ considered.

• FedProx [50]: It augments FedAvg with a proximal term but still minimizes the vanilla federated learning objective.

• q-FFL [51]: It raises the per-client losses to the power (1 + q), where q ≥ 0 is a parameter, in order to focus on
clients with higher loss. We run q-FFL for values of q in {10j , j ∈ {−3, · · · , 1}}.

• AFL [57]: It aims to minimize the worst per-client loss. We implement it as an asymptotic version of q-FFL,
using a large value of q, as this was found to yield better convergence with comparable performance [51]. In the
experiments we take q = 10.0.

The experiments are conducted on the datasets described in Appendix C.1.

Hyperparameters.
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Rounds. We measure the progress of each algorithm by the number of calls to secure aggregation routine for weight
vectors, i.e., the number of communication rounds.

For the experiments, we choose the number of communication rounds depending on the convergence of the
optimization for FedAvg. For the EMNIST dataset, we run the algorithm for 3000 communication rounds with the
linear model and 1000 for the ConvNet. For the Sent140 dataset, we run the 1000 communication rounds for the linear
model and 600 for the RNN.

Devices per Round. We choose the same number of clients per round for each method, with the exception of
FedAvg, θ. All clients are assumed to be available and selections are made uniformly at random. In particular, we
select 100 clients per round for all experiments with the exception of Sent140 RNN for which we used 50 clients per
round.

Local Updates and Minibatch Size. Each selected client locally runs 1 epoch of mini-batch stochastic gradient
descent locally. We used the default mini-batch of 10 for all experiments [54], except for 16 for EMNIST ConvNet.
This is because the latter experiments were run using on a GPU, as we describe in the section on the hardware.

Learning rate scheme. We now describe the learning rate γt used during LocalUpdate. For the linear model we used a
constant fixed learning rate γt ≡ γ0, while for the neural network models, we using a step decay scheme of the learning
rate γt = γ0c

−bt/t0c for some where γ0 and 0 < c ≤ 1 are tuned. We tuned the learning rates only for the baseline
FedAvg and used the same learning rate for the other baselines and ∆-FL at all values of θ.

For the neural network models, we fixed t0 so that the learning rate was decayed once or twice during the fixed time
horizon T . In particular, we used t0 = 400 for EMNIST ConvNet (where T = 1000) and t0 = 200 for Sent140 RNN
(where T = 600). We tuned c from the set {2−3, 2−2, 2−1, 1}, while the choice of the range of γ0 depended on the
dataset-model pair. The tuning criterion we used was the mean of the loss distribution over the training clients (with
client k weighted by αk) at the end of the time horizon. That is, we chose the γ0, c which gave the best terminal training
loss.

Tuning of the regularization parameter. The regularization parameter λ for linear models was tuned with cross
validation from the set {10−k : k ∈ {3, · · · , 8}}. This was performed as described below.

For each dataset, we held out half the training clients as validation clients. Then, for different values of the
regularization parameter, we trained a model with the (smaller subset of) training clients and evaluate its performance
on the validation clients. We selected the value of the regularization parameter as the one which gave the smallest 90th

percentile of the misclassification error on the validation clients.

Baselines Parameters. We tune the proximal parameter of FedProx with cross validation. The procedure we followed
is identical to the procedure we described above for the regularization parameter λ. The set of parameters tested is
{10−j , j ∈ {0, . . . , 3}}. We did not attempt to tune the parameter q of q-FFL and report the performance of all values
of q which we tried.

Hyperparameters of ∆-FL. We optimize ∆-FL via Algorithm 3 with a fixed number of local steps, corresponding to
one epoch. For simplicity, we calculate the quantile exactly, assuming client losses are available to the server.

C.3 Evaluation Strategy and Other Details

Evaluation metrics. We record the loss of each training client and the misclassification error of each testing client, as
measured on its local data.

The evaluation metrics noted in Section C.4 are the following : the weighted mean of the loss distribution over the
training clients, the (unweighted) mean misclassification error over the testing clients, the weighted τ -percentile of the
loss over the training client and the (unweighted) τ -percentile of the misclassification error over the testing clients for
values of τ among {20, 50, 60, 80, 90, 95}. We also present the 90th and 95th superquantile of the test misclassification
error (i.e., average misclassification error of the worst 10% and 5% of the clients respectively), as well as the average
test misclassification error of the best 10% clients. The weight αk used for training client k was set proportional to the
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Table 4: Metrics for the test misclassification error for EMNIST (Linear Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 34.38± 0.38 18.39± 0.33 21.54± 0.35 32.61± 0.39 49.65± 0.67
FedAvg θ = 0.8 34.20± 0.45 18.25± 0.22 21.37± 0.26 32.10± 0.34 49.92± 1.16
FedAvg θ = 0.5 34.51± 0.47 18.21± 0.30 21.40± 0.36 32.36± 0.59 50.28± 0.77
FedAvg θ = 0.1 34.60± 0.46 18.58± 0.31 21.71± 0.37 32.54± 0.37 50.33± 1.28
FedProx 33.82± 0.30 18.25± 0.23 21.37± 0.35 31.75± 0.20 49.15± 0.74
q-FFL (Best q = 1.0) 34.71± 0.27 19.34± 0.30 22.33± 0.41 32.80± 0.23 49.90± 0.58
Tilted-ERM (Best t = 1.0) 34.15± 0.25 10.78± 0.30 22.43± 0.29 32.36± 0.23 48.59± 0.62
AFL 39.32± 0.27 25.42± 0.27 28.64± 0.43 38.16± 0.34 51.62± 0.28

∆-FL θ = 0.8 34.48± 0.26 19.16± 0.32 22.24± 0.32 32.85± 0.31 49.10± 0.24
∆-FL θ = 0.5 35.01± 0.20 20.46± 0.34 23.64± 0.22 33.83± 0.34 48.44± 0.38
∆-FL θ = 0.1 38.32± 0.48 23.86± 0.59 27.27± 0.64 37.52± 0.67 50.34± 0.95

Table 5: Metrics for the test misclassification error for EMNIST (ConvNet Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 16.63± 0.50 4.94± 0.14 6.43± 0.24 15.34± 0.37 28.46± 1.07
FedAvg θ = 0.8 15.95± 0.42 5.25± 0.19 6.86± 0.38 14.84± 0.24 26.82± 1.28
FedAvg θ = 0.5 16.22± 0.23 5.06± 0.17 6.47± 0.28 15.05± 0.25 27.56± 0.81
FedAvg θ = 0.1 15.97± 0.43 5.40± 0.42 7.10± 0.64 14.76± 0.20 26.35± 2.08
FedProx 16.01± 0.54 5.16± 0.32 6.68± 0.44 14.88± 0.29 27.01± 1.86
q-FFL (Best q = 0.001) 16.58± 0.30 5.05± 0.21 6.53± 0.20 15.40± 0.43 28.02± 0.80
Tilted-ERM (Best t = 1.0) 15.69± 0.38 7.31± 0.68 7.26± 0.51 14.66± 0.16 25.46± 1.49
AFL 33.00± 0.37 20.38± 0.23 22.92± 0.23 31.58± 0.27 45.07± 1.00

∆-FL θ = 0.8 16.08± 0.40 5.60± 0.14 7.31± 0.29 14.85± 0.48 26.23± 1.15
∆-FL θ = 0.5 15.48± 0.30 6.13± 0.15 8.08± 0.16 14.73± 0.22 23.69± 0.94
∆-FL θ = 0.1 16.37± 1.03 6.61± 0.42 8.28± 0.65 15.49± 1.03 25.45± 2.77

number of datapoints on the client.

Evaluation times. We evaluate the model during training process for once every l communication rounds. The value
of l used was l = 50 for EMNIST linear model, l = 10 for EMNIST ConvNet, l = 20 for Sent140 linear model and
l = 25 for Sent140 RNN.

Hardware. We run each experiment as a simulation as a single process. The linear models were trained on m5.8xlarge
AWS instances, each with an Intel Xeon Platinum 8000 series processor with 128 GB of memory running at most 3.1
GHz. The neural network experiments were trained on workstation with an Intel i9 processor with 128 GB of memory
at 1.2 GHz, and two Nvidia Titan Xp GPUs. The Sent140 RNN experiments were run on a CPU while the other neural
network experiments were run using GPUs.

Software Packages. Our implementation is based on NumPy using the Python language. In the neural network
experiments, we use PyTorch to implement the LocalUpdate procedure, i.e., the model itself and the automatic
differentiation routines provided by PyTorch to make SGD updates.

Randomness. Since several sampling routines appear in the procedures such as the selection of clients or the local
stochastic gradient, we carry our experiments with five different seeds and plot the average metric value over these
seeds. Each simulation is run on a single process. Where appropriate, we report one standard deviation from the mean.
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Table 6: Metrics for the test misclassification error for Sent140 (Linear Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.81± 0.38 46.83± 0.54
FedAvg θ = 0.8 34.47± 0.03 12.08± 0.16 21.69± 0.26 34.62± 0.17 46.59± 0.38
FedAvg θ = 0.5 34.46± 0.07 12.11± 0.24 21.55± 0.51 34.48± 0.20 47.00± 0.40
FedAvg θ = 0.1 34.79± 0.32 11.97± 0.37 22.08± 0.75 34.93± 0.35 46.69± 0.84
FedProx 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.82± 0.39 46.83± 0.54
q-FFL (Best q = 1.0) 34.48± 0.06 11.96± 0.14 21.61± 0.24 34.57± 0.16 46.38± 0.40
Tilted-ERM (Best t = 1.0) 34.71± 0.31 12.00± 0.14 21.83± 0.34 34.91± 0.39 46.70± 0.50
AFL 35.97± 0.08 11.83± 0.09 23.58± 0.28 36.09± 0.17 47.51± 0.32

∆-FL θ = 0.8 34.41± 0.22 12.17± 0.11 21.77± 0.34 34.64± 0.25 46.44± 0.38
∆-FL θ = 0.5 35.28± 0.25 11.68± 0.40 23.03± 0.38 35.55± 0.53 46.64± 0.41
∆-FL θ = 0.1 37.78± 0.89 12.86± 0.52 23.93± 0.99 37.80± 1.30 51.38± 1.07

Table 7: Metrics for the test misclassification error for Sent140 (RNN Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 30.16± 0.44 4.36± 1.26 10.06± 2.06 29.51± 0.33 49.66± 3.95 1
FedAvg θ = 0.8 29.85± 0.46 5.39± 1.32 11.90± 2.27 29.57± 0.31 46.93± 3.84 1
FedAvg θ = 0.5 31.06± 1.01 4.33± 2.73 9.69± 4.89 30.14± 0.71 53.10± 7.22 1
FedAvg θ = 0.1 31.96± 1.47 4.82± 2.09 11.65± 4.83 31.55± 1.13 52.87± 8.41 1
FedProx 30.20± 0.48 4.35± 1.23 10.37± 2.08 29.51± 0.32 49.85± 4.07
q-FFL (Best q = 0.01) 29.99± 0.56 4.90± 1.66 10.98± 2.88 29.56± 0.39 48.65± 4.68
Tilted-ERM (Best t = 1.0) 30.13± 0.49 14.17± 2.10 13.18± 3.33 29.96± 0.84 46.54± 3.27
AFL 37.74± 0.65 9.90± 1.46 18.19± 1.99 36.95± 1.03 57.78± 1.19

∆-FL θ = 0.8 30.30± 0.33 6.75± 2.68 13.05± 3.87 29.92± 0.38 46.46± 4.39
∆-FL θ = 0.5 33.58± 2.44 8.74± 3.98 16.77± 6.62 33.28± 2.27 50.47± 8.24
∆-FL θ = 0.1 51.97± 11.81 9.11± 5.47 16.67± 9.15 52.44± 13.21 86.44± 10.95

C.4 Experimental Results
We now present the experimental results of the paper.

• We present different metrics on the distribution of test misclassification error over the clients, comparing ∆-FL to
baselines.

• We study the convergence of Algorithm 3 for ∆-FL over the course of the optimization, and compare it with
FedAvg.

• We plot the histograms of the distribution of losses over train clients as well as the test misclassification errors over
test clients at the end of the training process.

• We present in the form of scatter plots the training loss and test misclassification error across clients achieved at the
end of training, versus the number of local data points on the client.

• We present the number of clients having a loss greater than the quantile at each communication round for ∆-FL.
This gives the effective number of clients selected in each round, cf. Proposition 2 and Remark 1.

Comparison to Baselines. We now present a detailed comparison of various statistics of the test misclassification error
distribution for different methods in Table 4- For each column the smallest mean over five random runs is highlighted in
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Figure 5: Histogram of loss distribution over training clients and misclassification error distribution over testing clients
for EMNIST. The identification of the model (linear or ConvNet) is given on the y-axis of the histograms.

bold. Further, if no other method is within one standard deviation of this method, the entire entry (i.e., mean± std) is
highlighted in bold.

Histograms of Loss and Test Misc. Error over Devices. Here, we plot the histograms of the loss distribution over
training clients and the misclassification error distribution over testing clients. We report the losses and errors obtained
at the end of the training process. Each metric is averaged per client over 5 runs of the random seed. Figure 5 shows the
histograms for EMNIST, while Figure 6 shows the histograms for Sent140 dataset. for Sent140. We note that ∆-FL
tends to exhibit thinner upper tails at at multiple values of θ and a lower variance of the distribution in most of the cases.
This is also confirmed by the figures in table 4 to 7. This shows the benefit of using ∆-FL over vanilla FedAvg.

Performance compared to local data size. Next, we plot the loss on training clients versus the amount of local data
on the client and the misclassification error on the test clients versus the amount of local data on the client. See Figure 7
for EMNIST and Figure 8 for Sent140.

Observe firstly that improvement over the worst cases is achieved regardless of the local data size of the clients.
Indeed, the client re-weighting step operates a sorting of the loss of the clients which does not prevent small clients
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Figure 6: Histogram of loss distribution over training clients and misclassification error distribution over testing clients
for Sent140. The identification of the model (linear or RNN) is given on the y-axis of the histograms.

from being selected. In contrary, FedAvg, by averaging with respect to the weights of the clients is likely to put more
the accent on the clients with larger local data size. Secondly, ∆-FL appears to reduce the variance of of the loss on
the train clients. Lastly, note that amongst test clients with a small number of data points (e.g., < 200 for EMNIST or
< 100 for Sent140), ∆-FL reduces the variance of the misclassification error. Both effects are more pronounced on the
neural network models.
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Scatter plot of losses and accuracies across devices sizes for EMNIST (Linear Model)
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Figure 7: Scatter plot of (a) loss on training client vs. amount of local data, and (b) misclassification error on testing
client vs. amount of local data for EMNIST.
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Scatter plot of losses and test misclassification error across across devices sizes for Sent140 (Linear Model)
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Figure 8: Scatter plot of (a) loss on training client vs. amount of local data, and (b) misclassification error on testing
client vs. amount of local data for Sent140.
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