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Abstract

Federated learning has emerged as the predominant framework for distributed ma-
chine learning over decentralized data, e.g. in mobile phones. The usual approaches
suffer from a distribution shift: the model is trained to fit the average population
distribution but is deployed on individual clients, whose data distributions can be
quite different. We present a distributionally robust approach to federated learning
based on a risk measure known as the superquantile and show how to optimize it by
interleaving federated averaging steps with quantile computation. We demonstrate
experimentally that our approach is competitive with usual ones in terms of average
error and outperforms them in terms of tail statistics of the error.

1 Introduction

Federated learning is a distributed machine learning framework where many clients (e.g. mobile
devices) collaboratively train a model under the orchestration of a central server (e.g. service provider),
while keeping the training data private and local to the client throughout the training process [16, 10].
It has found widespread adoption across industry [1, 18] for applications ranging from smart device
apps [22, 6] to healthcare [2, 9].

A key feature of federated learning is statistical heterogeneity, i.e., client data distributions are not
identically distributed [10, 13]. Each client is a user who generates diverse data depending on their
unique personal, cultural, regional, and geographical characteristics.

This data heterogeneity in federated learning manifests itself as a train-test distributional shift. Indeed,
the usual approach minimizes the prediction error of the model on average over the population of
clients available for training [16] while at test time, the same model is deployed on individual clients.
This approach can be liable to fail on tail clients whose data distribution is far from most of the
population or who may have less data than most of the population. It is highly desirable, therefore, to
have a federated learning method that can robustly deliver good predictive performance across a wide
variety of natural distribution shifts posed by individual clients.

We present in this paper a robust approach to federated learning that guarantees a minimum level
of predictive performance to all clients even in situations where the population is heterogeneous.
The approach we develop addresses these issues by minimizing a learning objective based on the
notion of a superquantile [20, 19], a risk measure that captures the tail behavior of a random variable.
Our algorithm relies on quantile statistics of the losses to filter out clients on which to run federated
averaging steps. Experimental results on benchmark datasets shows that our approach yields improved
performance on tail clients over a number of state of the art baselines while maintaining competitive
performance on the average error.
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2 Proposed Objective and Optimization Algorithm

Suppose we have n clients such as mobile phones. The loss incurred by the model w ∈ Rd on this
client i is Fi(w) := Ez∼pi

[f(w; z)], where pi is the distinct data distribution on client i and f(w; ξ)
is the loss function e.g. cross entropy, on data point z. The usual objective of federated learning [16]
is simply the empirical risk minimization (ERM) approach

min
w∈Rd

1

n

n∑
i=1

Fi(w) . (1)

Owing the natural statistical heterogeneity in the data, the data distribution p encountered at test
time on an unseen test client might be different from the population training distribution ptrain =
(1/n)

∑n
i=1 pi, leading to poor performance on such clients. Our goal is to improve the performance

on such tail clients.

To this end, we directly minimize the average loss across tail clients above a certain tail threshold.
We formalize this through the notion of a risk measure known as the superquantile, a tail summary
statistic of random variables [20]. The (1 − α)-superquantile is defined for a continuous random
variable Z and α ∈ (0, 1) as Sα(Z) = E[Z |Z > Qα(Z)], where Qα(Z) is the (1− α)-quantile of
Z. A similar interpretation holds for discrete distributions; it is formally defined as

Sα(u1, · · · , un) := max

{
n∑

i=1

πiui : 0 ≤ πi ≤
1

αn
∀ i ∈ [n],

n∑
i=1

πi = 1

}
.

This is an instance of the continuous knapsack problem and can be solved optimally by a greedy
algorithm [4]. Assuming u1 < · · · < un and αn is an integer, the optimal solution π⋆ above satisfies
π⋆
i = 1/(αn) for i ≥ (1− α)n or that the ui’s larger than their (1− α) quantile are averaged.

The ∆-FL Objective and Distributional Robustness. Instead of minimizing the average loss as in
(1), our proposed framework, called ∆-FL, minimizes the tail loss across clients, as measured by the
superquantile. Concretely, at level α ∈ (0, 1), we minimize

Fα(w) := Sα
(
F1(w), · · · , Fn(w)

)
. (2)

If we have a test client whose distribution pπ =
∑n

i=1 πipi can be written as a mixture of the
training distributions pi, . . . , pn, then the ∆-FL objective minimizes maxπi≤1/(αn) Ez∼pπ

[f(w; z)],
the worst-case loss over all mixture distributions with a weight constraint πi ≤ 1/(αn).

Federated Optimization of ∆-FL. In order to design a federated optimization algorithm to optimize
the ∆-FL objective, we must overcome two challenges: (i) nonsmoothness, and (ii) biased gradient
estimation. The superquantile a 7→ Sα(u1, · · · , un) is a nonsmooth function, leading to potential
difficulties in optimization. We overcome this challenge by deriving an expression for the subgradient
of the ∆-FL objective. Concretely, when αn is an integer, we have

∂Fα(w) ∋
n∑

i=1

π⋆
i Fi(w) , where π∗

i =
I(Fi(w) ≥ Qα)∑n
j=1 I(Fj(w) ≥ Qα)

, (3)

and Qα = Qα(F1(w), · · · , Fn(w)) is the (1−α)-quantile of the losses. See Appendix B for a proof.

The second challenge stems from the lack of unbiased gradient estimators for the superquantile. Given
m i.i.d. copies Z1, . . . , Zm of a random variable Z, the empirical mean Z̄m = (1/m)

∑m
i=1 Zi is

an unbiased estimate of the population mean, i.e., E[Z̄m] = E[Z]. This is no longer true for the
superquantile, i.e., E[Sα(Z1, · · · , Zm)] ̸= Sα(Z). As a result, we do not have access to unbiased
stochastic gradients (here, m is the batch size). In federated learning, it is not reasonable to assume
that we have access to all the clients due to a diurnal availability pattern of clients [10]. We overcome
this issue by actually minimizing the expected minibatch superquantile instead, defined as

F̃α,m(w) = E(i1,··· ,im)∼Um

[
Sα

(
Fi1(w), . . . , Fim(w)

)]
,

where Um is the uniform distribution over all subsets of {1, . . . , n} of batch size m. This is a uniform
close surrogate of the original objective [11, Prop. 1]

|Fα(w)− F̃α,m(w)| ≤ 3√
αm

max
i=1,...,n

|Fi(w)| .
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Using this expression, we design a federated optimization algorithm that steps of the usual federated
averaging algorithm [16] with quantile estimation steps. Specifically, in each communication round,
the local updates w+

i from the subsample of m selected clients i ∈ S are aggregated to update the
global model with the following two steps:

• estimate the quantile Q̂α ≈ Qα(Fi(w) : i ∈ S) of the per-client losses to the server, and

• aggregate the updates from tail clients where Fi(w) ≥ Q̂α to find the new global model w+ as

w+ =
1

|Sα|
∑
i∈Sα

w+
i , where Sα = {i : Fi(w) ≥ Q̂α} .

The full algorithm is given in Appendix A. Similar to the standard FedAvg algorithm [16] for ERM
objective (1), this aggregation rule enjoys a simplification in the case of a single local update per-client
with a learning rate γ. Specifically, under the assumption of full client participation (i.e., m = n), if
the local update w − w+

i = γ∇Fi(w) is a single gradient step and Q̂α = Qα(F1(w), · · · , Fn(w))
is the exact quantile of the per-client losses, the aggregated update is simply a subgradient step
w − w+ = γ∇Fα(w) where we denote the subgradient as ∇Fα(w) ∈ ∂Fα(w). Similar to FedAvg,
our algorithm reduces the overall communication cost, which is often the bottleneck in bandwidth-
constrained edge devices, while incurring a larger computation cost at each client.

3 Numerical Experiments

In this section, we demonstrate the effectiveness of ∆-FL in handling natural distribution shifts in
federated learning.

Setup. We measure the 90th percentile of the per-client misclassification errors, as a measure of the
tail performance. We repeat all experiments 5 times and report the mean and standard deviation. We
consider two learning tasks.

(a) Character Recognition: We use the EMNIST dataset [3], where the input x is a 28× 28 grayscale
image of a handwritten character and the output y is its label (0-9, a-z, A-Z). Each client is a
writer of the character x. We train both a linear model and a LeNet-type convolutional network.

(b) Sentiment Analysis: We use the Sent140 dataset [5] where the input x is a tweet and the output
y = ±1 is its sentiment. Each client is a distinct Twitter user. We train both a logistic regression
and a Long-Short Term Memory neural network architecture (LSTM). The LSTM is built on the
GloVe embeddings of the words of the tweet [8].

Baselines. We compare ∆-FL with the following baselines: We consider two methods which attempt
to minimize the usual objective (1): FedAvg [16] and FedProx [14]. The latter augments FedAvg
with a proximal term for more stable optimization. We also consider a few heterogeneity-aware
objectives: Tilted-ERM [12], which is the analogue of ∆-FL but using the log-sum-exp function
and AFL [17], whose objective is obtained as the limit limα→0 Fα(w) of the ∆-FL objective. We
also consider q-FFL [15], which raises the per-client loss Fi to the (q + 1)th power, for some q > 0.
We optimize q-FFL and Tilted-ERM with the federated optimization algorithms proposed in their
respective papers. We use q-FFL with q = 10 in place of AFL, as it was found to have more stable
convergence with similar performance.

Hyperparameters. We fix the number of clients per round to be m = 100 for each dataset-model
pair except for Sent140-RNN, for which we use m = 50. We fix an iteration budget and tune a
learning rate for FedAvg. The same iteration budget and learning rate schedule were used for all other
methods including ∆-FL. All hyperparameters were tuned to find the best tail error (90th percentile).

Results. The results are in Tables 1 and 2. We visualize in Figure 1 the distribution of test errors.

∆-FL consistently achieves the smallest 90th percentile error. ∆-FL achieves a 3.3% absolute
(12% relative) improvement over any ERM objective on EMNIST-ConvNet. Among the heterogeneity
aware objectives, ∆-FL achieves 1.8% improvement over the next best objective, which is Tilted-
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Table 1: 90th percentile of the distribution of
test misclassification errors (in %).

EMNIST Sent140
Linear ConvNet Linear RNN

FedAvg 49.660.67 28.461.07 46.830.54 49.673.95
FedProx 49.150.74 27.011.86 46.830.54 49.864.07
q-FFL 49.900.58 28.020.80 46.390.40 48.664.68
Tilted-ERM 48.590.62 25.461.49 46.690.49 46.543.27
AFL 51.620.28 45.081.00 47.520.32 57.781.19

∆-FL, α = 0.8 49.100.24 26.231.15 46.440.38 46.464.39

∆-FL, α = 0.5 48.440.38 23.690.94 46.640.41 50.488.24
∆-FL, α = 0.1 50.340.95 25.462.77 51.391.07 86.4510.95

Table 2: Mean of the distribution of test mis-
classification errors (in %).

EMNIST Sent140
Linear ConvNet Linear RNN

FedAvg 34.380.38 16.640.50 34.750.31 30.160.44
FedProx 33.820.30 16.020.54 34.740.31 30.200.48
q-FFL 34.340.33 16.590.30 34.480.06 29.960.56

Tilted-ERM 34.020.30 15.680.38 34.700.31 30.040.25
AFL 39.330.27 33.010.37 35.980.08 37.740.65

∆-FL, α = 0.8 34.490.26 16.090.40 34.410.22 30.310.33
∆-FL, α = 0.5 35.020.20 15.490.30 35.290.25 33.592.44
∆-FL, α = 0.1 38.330.48 16.371.03 37.790.89 51.9811.81

ERM. We note that q-FFL marginally outperforms ∆-FL on Sent140-Linear, but the difference 0.05%
is much smaller than the standard deviation across runs.

∆-FL is competitive at multiple values of α. For EMNIST-ConvNet, ∆-FL with α ∈ {0.5, 0.8} is
better in 90th percentile error than all other methods we compare to, and ∆-FL with α = 0.1 is tied
with Tilted-ERM, the next best method. We also empirically confirm that ∆-FL interpolates between
FedAvg (α → 1) and AFL (α → 0).

Yet, ∆-FL is competitive in terms of average error. Perhaps surprisingly, ∆-FL gets the best test
error performance on EMNIST-ConvNet and Sent140-Linear. This suggests that the average test
distribution is shifted relative to the average training distribution pα. In the other cases, we find that
the reduction in mean error is small relative to the gains in the 90th percentile error.

Minimizing superquantile loss over all clients performs better than minimizing worst error
over all clients. Specifically, AFL which aims to minimize the worst error among all clients, as well
as other objectives which approximate it (∆-FL with α → 0, q-FFL with q → ∞) tend to achieve
poor performance. ∆-FL offers a more nuanced and more effective approach via the constraint set
πi ≤ 1/(nα) than the straight pessimistic approach minimizing the worst error among all clients.

∆-FL yields improved prediction on non-conforming clients. This can be observed from the
histogram of ∆-FL in Figure 1, which exhibits thinner tails than FedAvg or Tilted-ERM. We see that
the ERM objective of FedAvg sacrifices performance on the nonconforming clients. Tilted-ERM
does improve over FedAvg in this regard, but ∆-FL has a thinner right tail than Tilted-ERM, showing
better handling of heterogeneity.

∆-FL yields improved prediction on data-poor clients. We observe in Figure 1 that Tilted-ERM
and q-FFL mainly improve the performance on data-rich clients, that is clients with lots of data. On
the other hand, ∆-FL gives a greater reduction in misclassification error on data-poor clients, that is
clients with little data (< 200 examples per client).

Usual

Ours

Histogram of per-client errors

Misclassification Error

60

Histogram of per-client errors FedAvg -FLΔ

FedAvg

-FLΔ

Figure 1: Per-client test misclassification error on EMNIST. Left: histogram of per-client errors. Right two:
Scaltter plot of dataset size versus test error.
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A Pseudocode

The pseudocode of the proposed optimization algorithm is given in Algorithm 1.

Algorithm 1 The ∆-FL Algorithm

Input: Initial iterate w(0), number of communication rounds T , number of clients per round m,
number of local updates τ , local step size γ

1: for t = 0, 1, · · · , T − 1 do
2: Sample m clients from [n] without replacement in S
3: Estimate the (1− α)-quantile of Fi(w

(t)) for i ∈ S; call this Q(t)

4: for each selected client i ∈ S in parallel do
5: Set π̃(t)

i = I
(
Fi(w

(t)) ≥ Q(t)
)

6: Initialize w
(t)
k,0 = w(t)

7: for k = 0, · · · , τ − 1 do
8: w

(t)
i,k+1 = (1− γλ)w

(t)
i,k − γ∇Fi(w

(t)
i,k)

9: end for
10: end for
11: w(t+1) =

∑
i∈S π̃

(t)
i w

(t)
i,τ/

∑
i∈S π̃

(t)
i

12: end for
13: return wT
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B Proofs

Proof of the Subgradient Expression (3). We first give a general expression for the subgradient.
Define the notation

Pα =

{
πi ∈ Rn : 0 ≤ πi ≤

1

αn
∀ i ∈ [n],

n∑
i=1

πi = 1

}
,

so that Sα(u1, · · · , un) = maxπ∈Pα
π⊤u.

Proposition 1. Fix a w ∈ Rd and let π⋆ ∈ argmaxπ∈Pα

∑n
i=1 πiFi(w). Then, we have,

n∑
i=1

π⋆
i Fi(w) ∈ ∂Fα(w) ,

where ∂Fα(w) denotes the regular subdifferential of Fα.

Proof. Let gn(w) = (F1(w), · · · , Fn(w)) denote the concatenation of the losses into a vector. Then,
Fα(w) = Sα ◦ gn(w). Since Sα is convex, we get that its (convex) subdifferential [e.g., 7, Cor. 4.4.4]
is

∂Sα(u) = argmax
π∈Pα

π⊤u .

Since gn is smooth and Sα is convex with full domain, we obtain the regular subdifferential of Sα ◦gn
by the chain rule [21, Thm. 10.6] as

∂(Sα ◦ gn) = ∇gn(w)∂Sα(u) ,
where ∇gn(w) ∈ Rd×n is the transpose of the Jacobian matrix of gn.

Let Z(w) be a discrete random variable which takes the value Fi(w) with probability 1/n for
i = 1, . . . , n, and let Qα(Z(w)) denote its (1− α)-quantile. Consider the weights π̂ ∈ ∆n−1 given
by a hard-thresholding based on whether Fi(w) is larger than its (1− α)-quantile:

π̃i = I
(
Fi(w) ≥ Qα(Z(w))

)
, and, π̂i =

π̃i∑n
i′=1 π̃i′

. (4)

The objective defined by these weights is F̂α(w) =
∑n

i=1 π̂iFi(w). The next proposition shows that
F̂α(w) = Fα(w) when αn is an integer, or is a close approximation in general.
Proposition 2. Assume F1(w) < · · · < Fn(w) and let i⋆ = ⌈αn⌉. Then, we have,

(a) π⋆ = argmaxπ∈Pα

∑n
i=1 πiFi(w) is unique,

(b) Qα(Z(w)) = Fi⋆(w),
(c) if αn is an integer, then π̂ = π⋆ so that F̂α(w) = Fα(w), and,
(d) if αn is not an integer, then

0 ≤ Fα(w)− F̂α(w) ≤
maxi=1,...,n |Fi(w)|

αn
.

Proof. We apply the property that the superquantile is a tail mean for discrete random variables [20,
Proposition 8] to get

Fα(w) =
1

αn

n∑
i=i⋆+1

Fi(w) +

(
1− ⌊αn⌋

αn

)
Fi⋆(w) .

Comparing with the definition Fα(w) =
∑n

i=1 π
⋆
1Fi(w), this gives a closed-form expression for

π⋆, which is unique because Fi⋆−1(w) < Fi⋆(w) < Fi⋆+1(w). For (b), note that Qα(Z(w)) =
inf{η ∈ R : P(Z(w) > η) ≤ α} equals Fi⋆(w) by definition of i⋆. Therefore, if αn is an integer,
π⋆ coincides exactly with π̂. When αn is not an integer, we have

F̂α(w) =
1

n− i⋆ + 1

n∑
i=i⋆

Fi(w) .

The bound on F̂α(w)− Fα(w) follows from elementary manipulations.
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