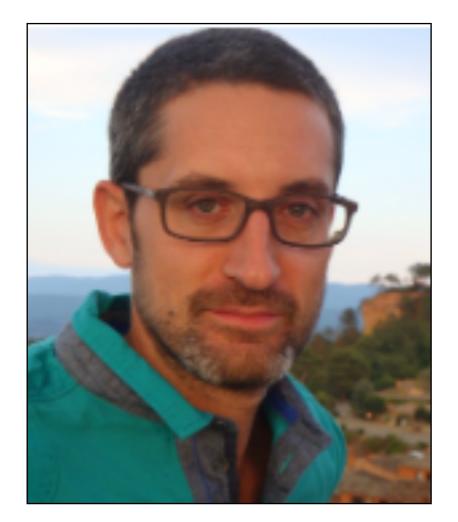
DEVICE HETEROGENEITY IN FEDERATED LEARNING A SUPERQUANTILE APPROACH

ERATED LEARNING ONE WORLD SEMINAR Yassine LAGUEL – Joint work with K. Pillutla, J. Malick and Z. Harchaoui

*Université Grenoble Alpes - CNRS - University of Washington

CNRS



J. MALICK

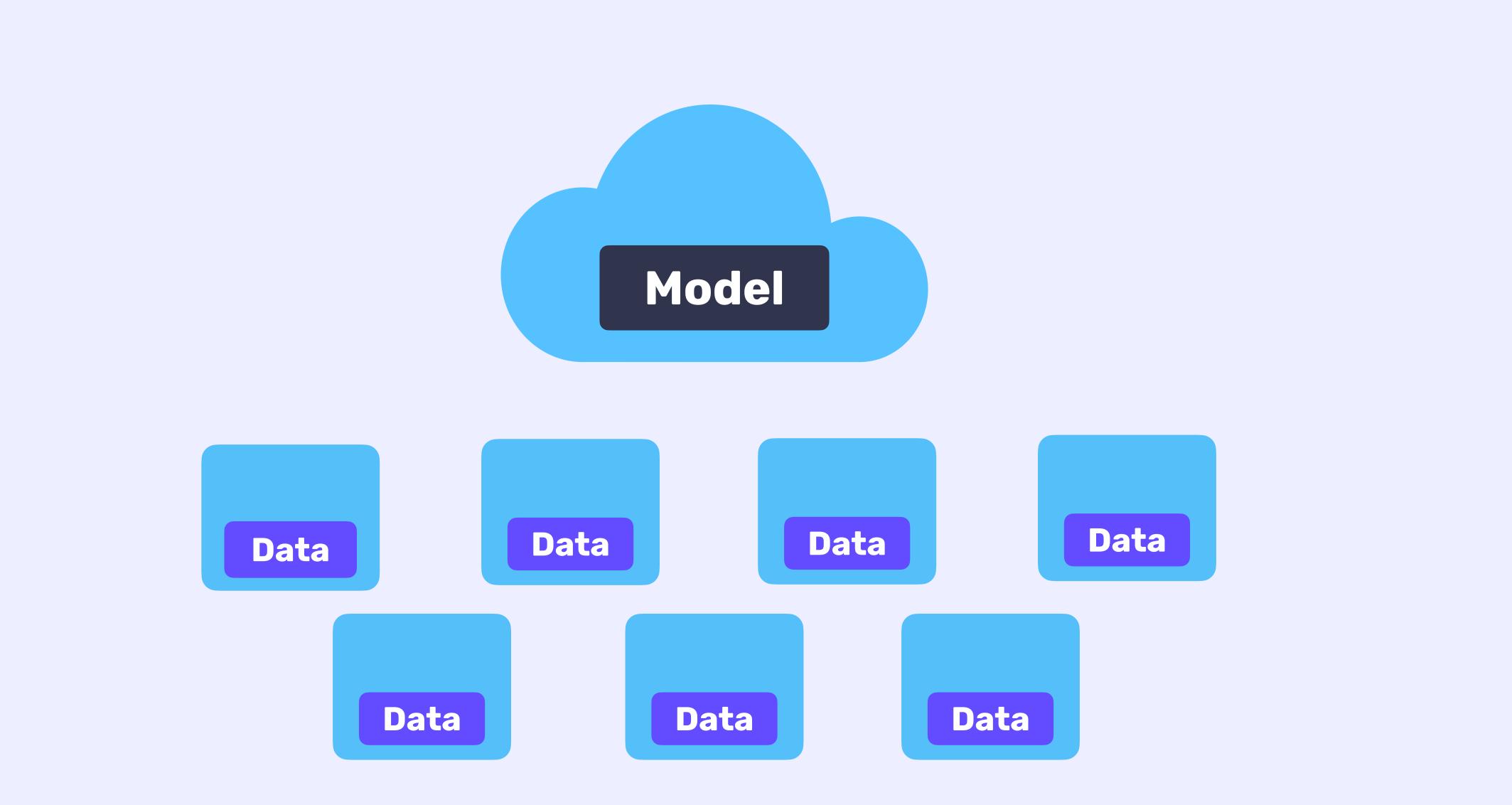
University of Washington

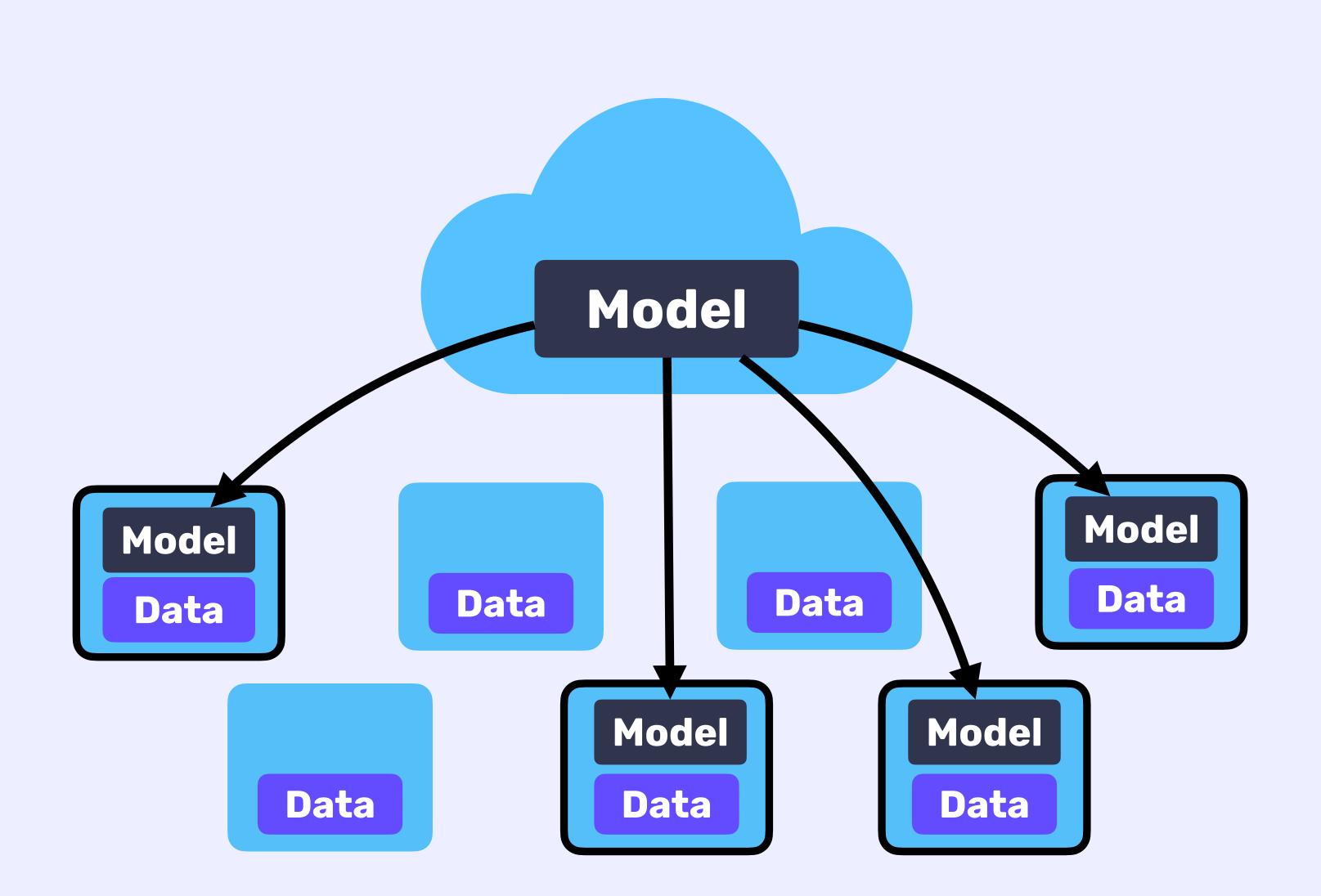
Collaboration with

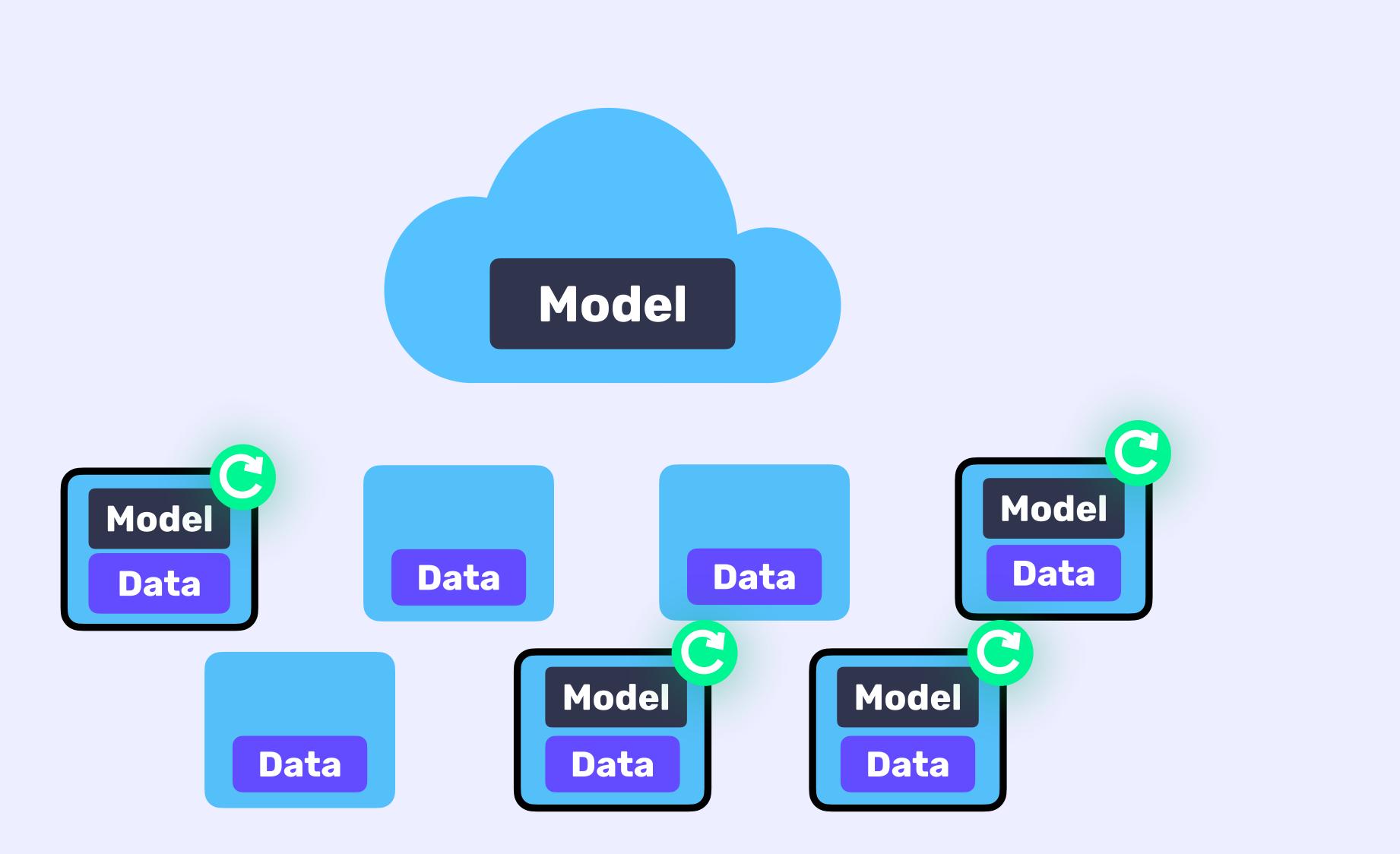
K. PILLUTLA

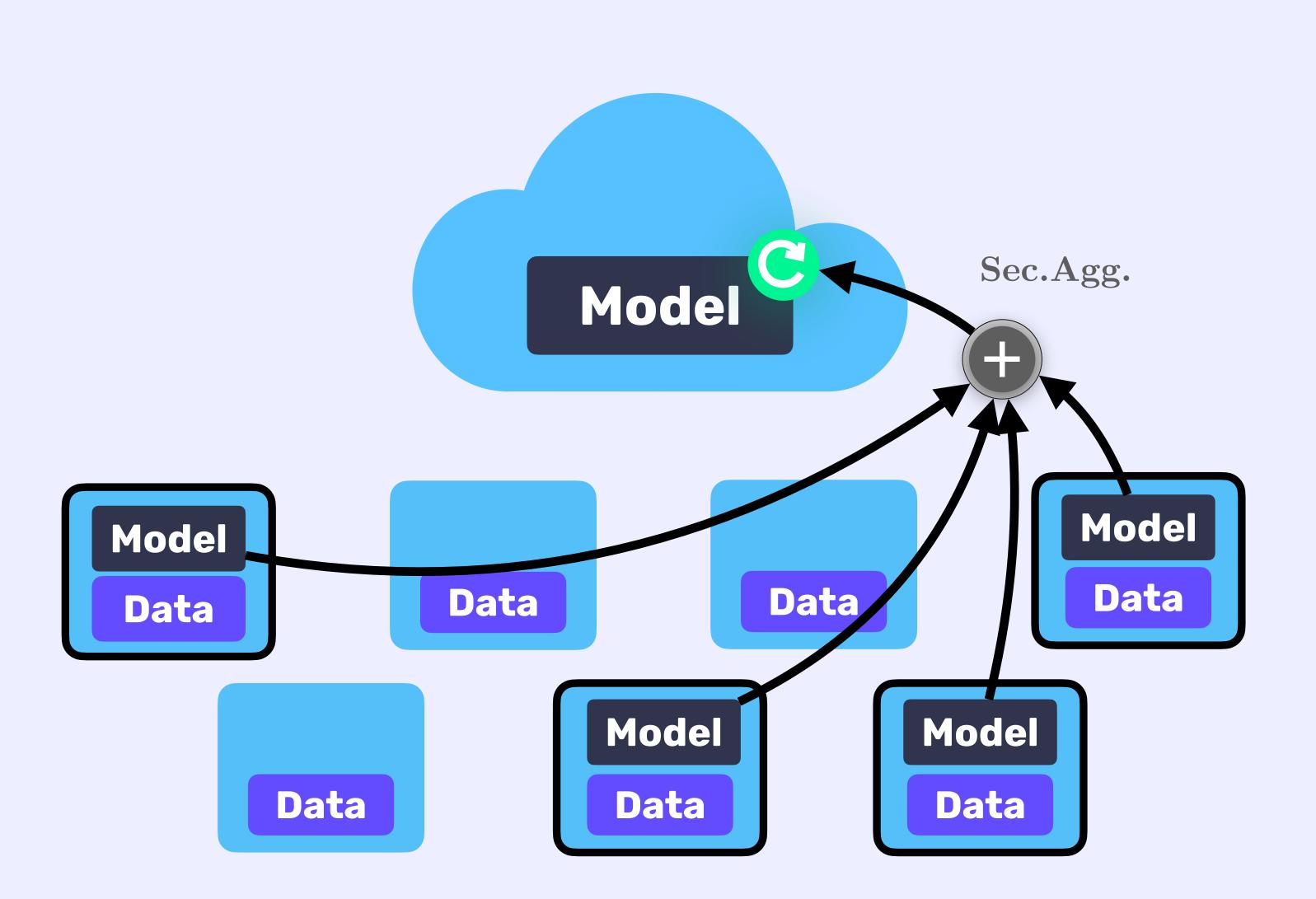
University of Washington

Z. HARCHAOUI









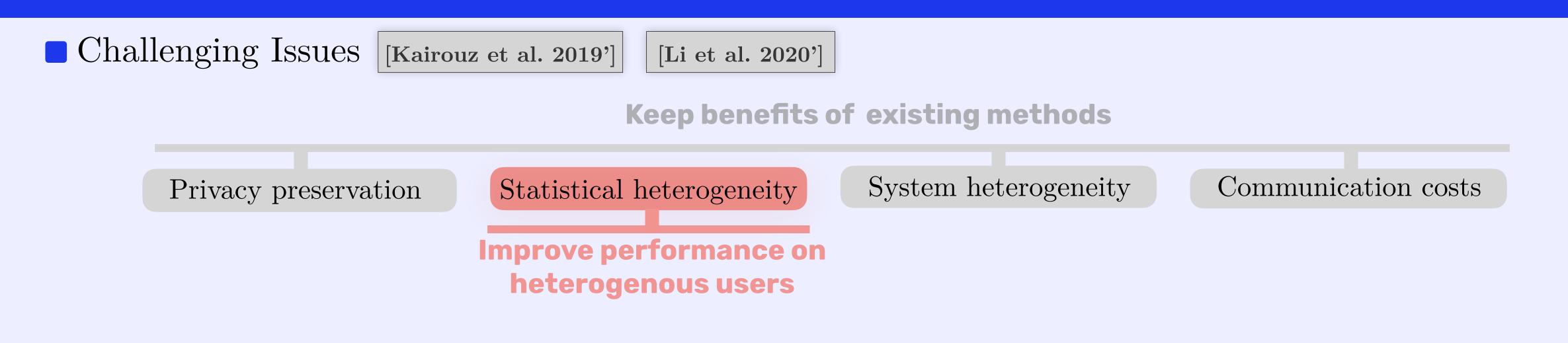
Privacy preservation

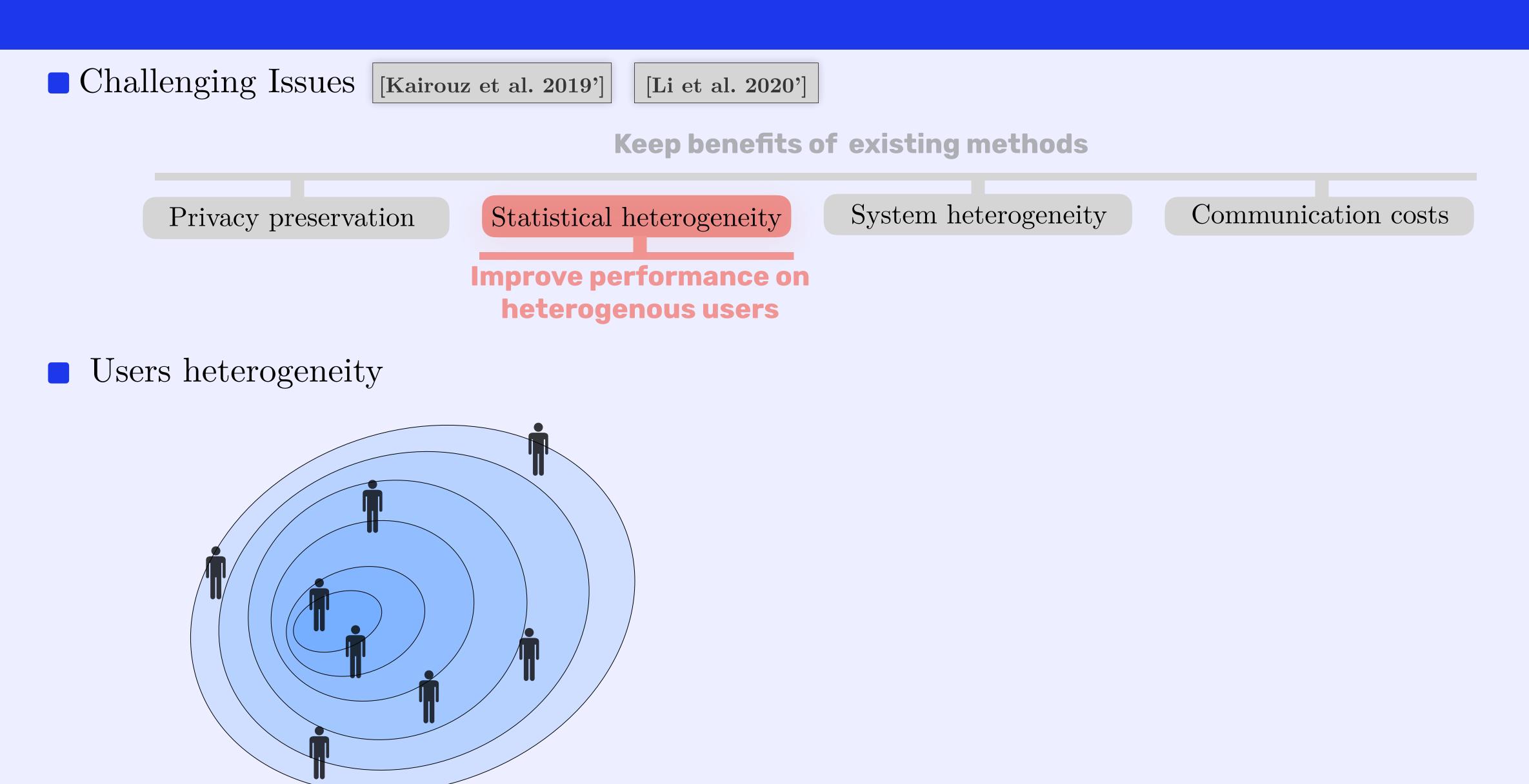
Statistical heterogeneity

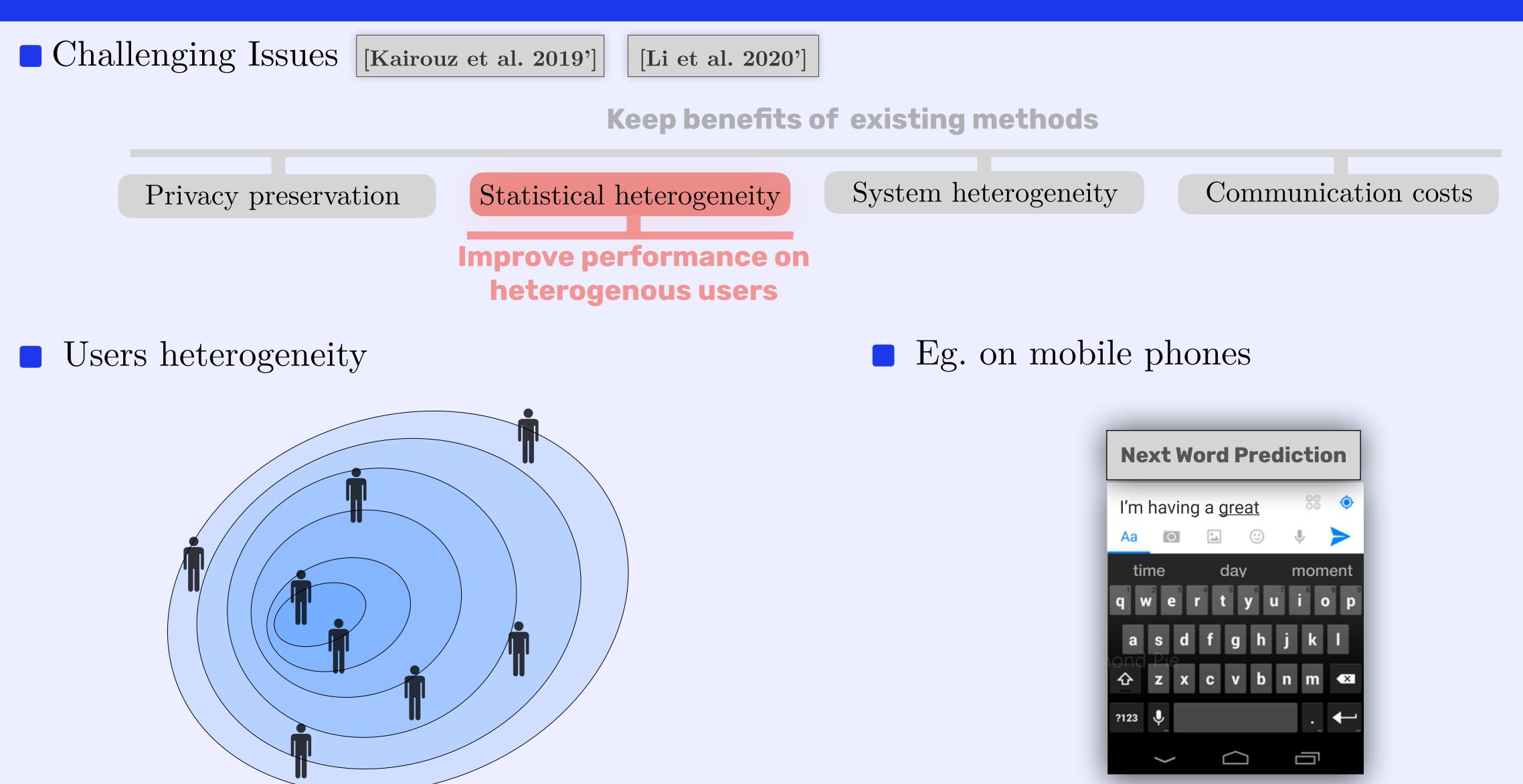
CHALLENGES

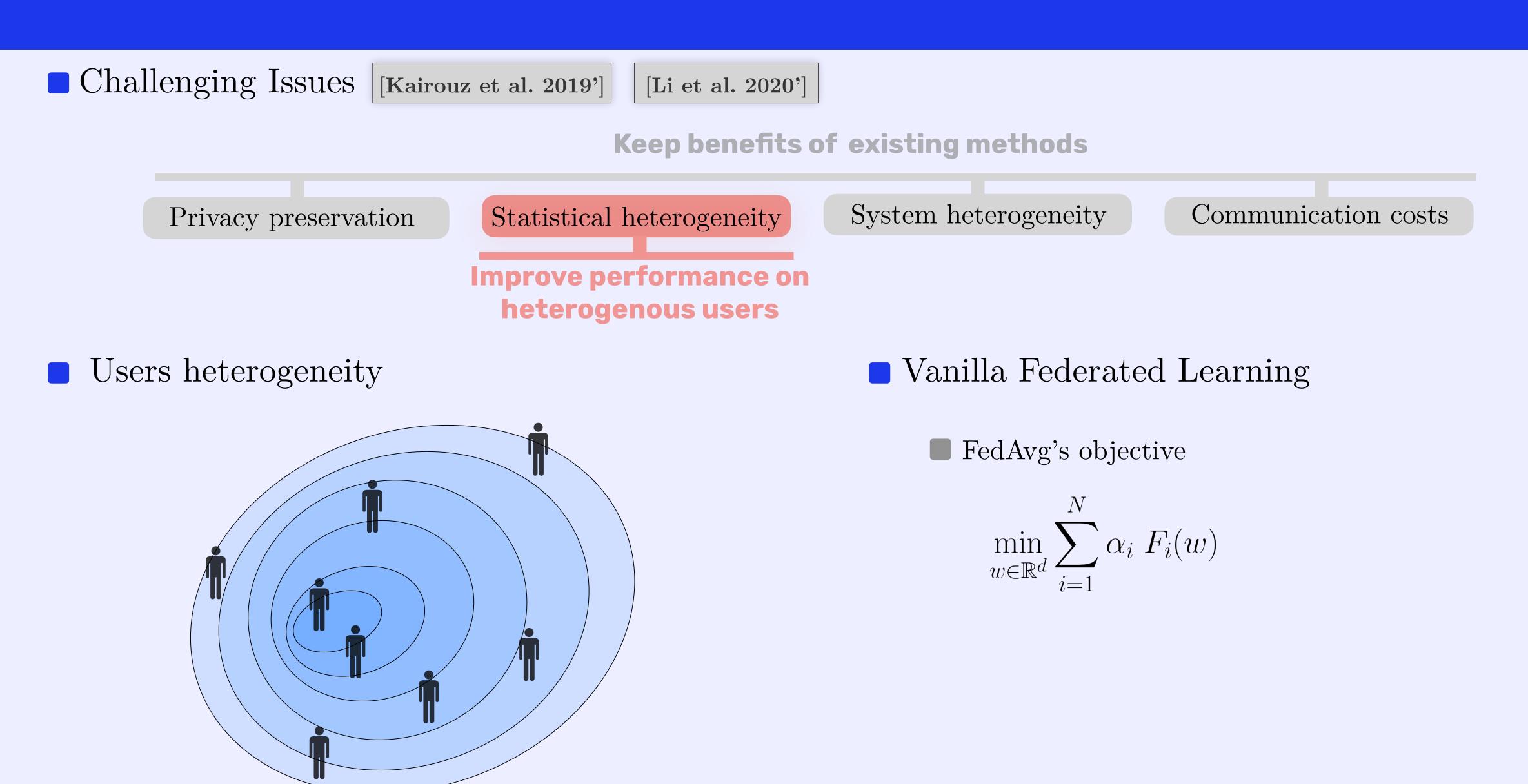
System heterogeneity

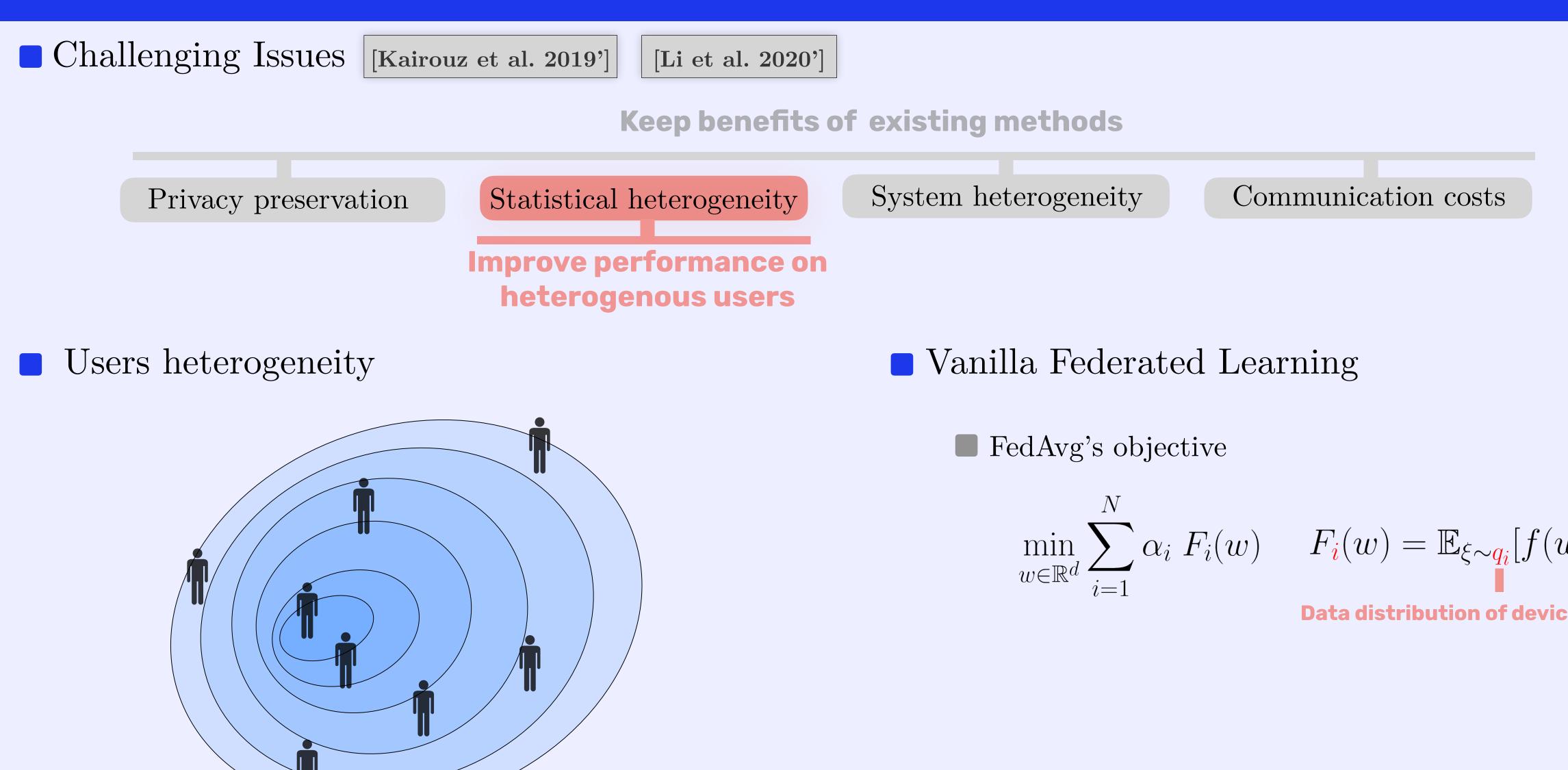
Communication costs





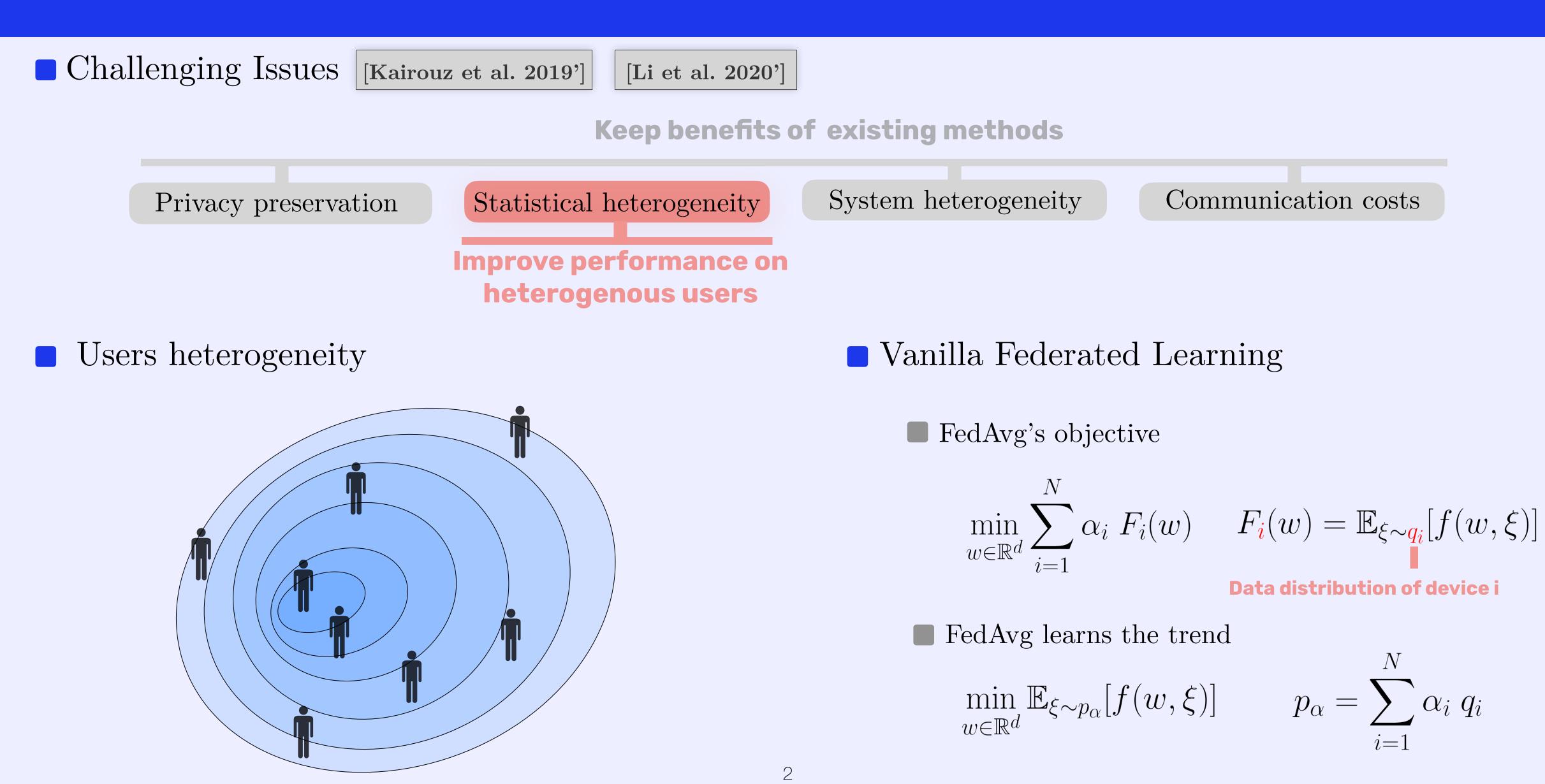


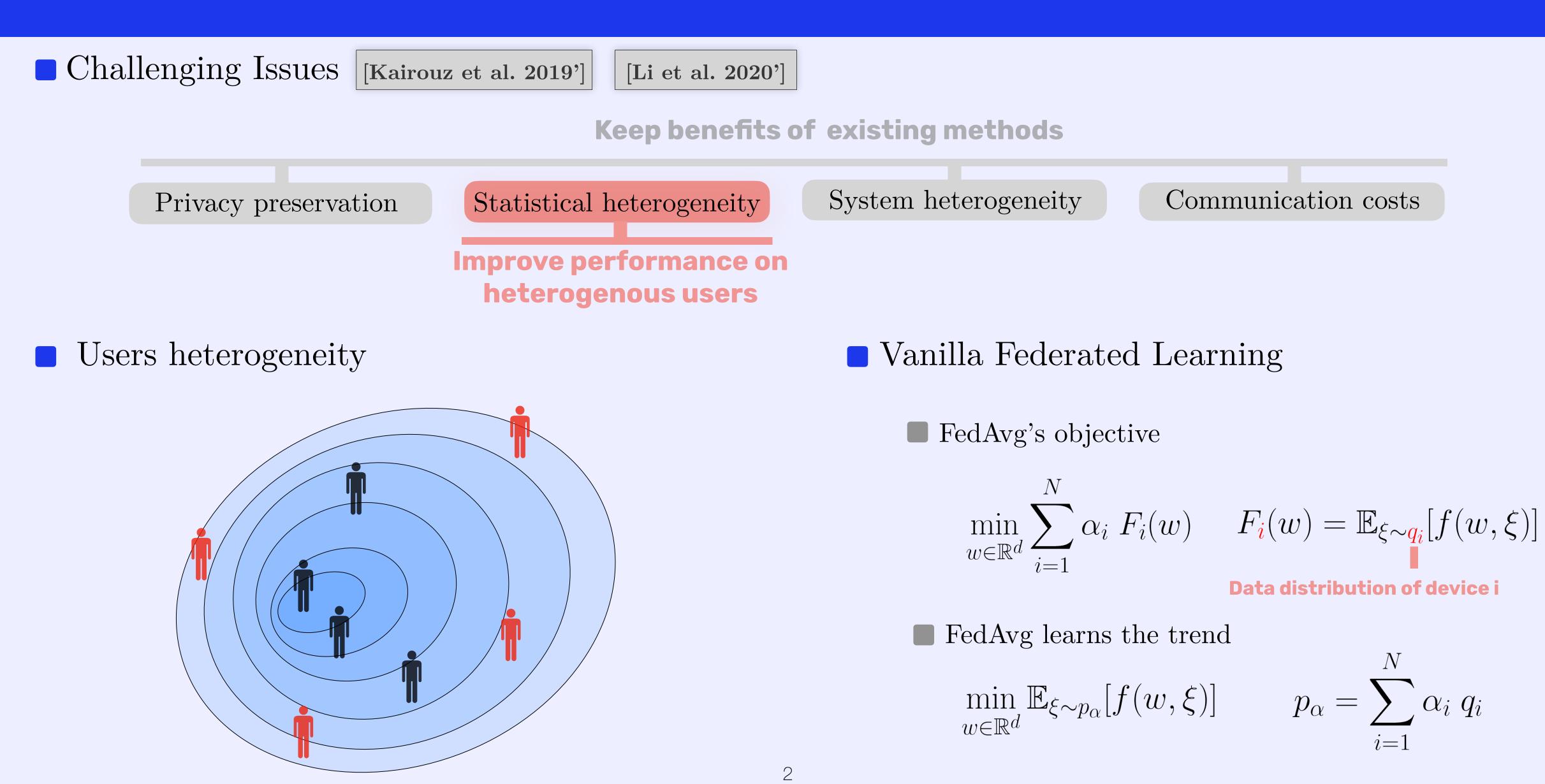




$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^N \alpha_i \ F_i(w) \qquad F_i(w) = \mathbb{E}_{\xi \sim q_i}[f(w, w)] = \mathbb{E}_{\xi \sim q_i}[f(w, w)]$$

Data distribution of device i





• We propose to extend this framework to make possible the handling of non-conforming users.

Vanilla Federated Learning

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{\xi \sim p_\alpha}[f(w, \xi)]$

Our Framework

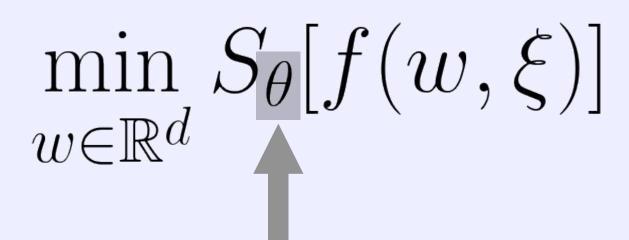
 $\min_{w \in \mathbb{R}^d} S_{\theta}[f(w, \xi)]$

• We propose to extend this framework to make possible the handling of non-conforming users.

Vanilla Federated Learning

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{\xi \sim p_\alpha}[f(w, \xi)]$

Our Framework



Measures conformity of training devices

Outline

Practical Solving

The A-FL Framework

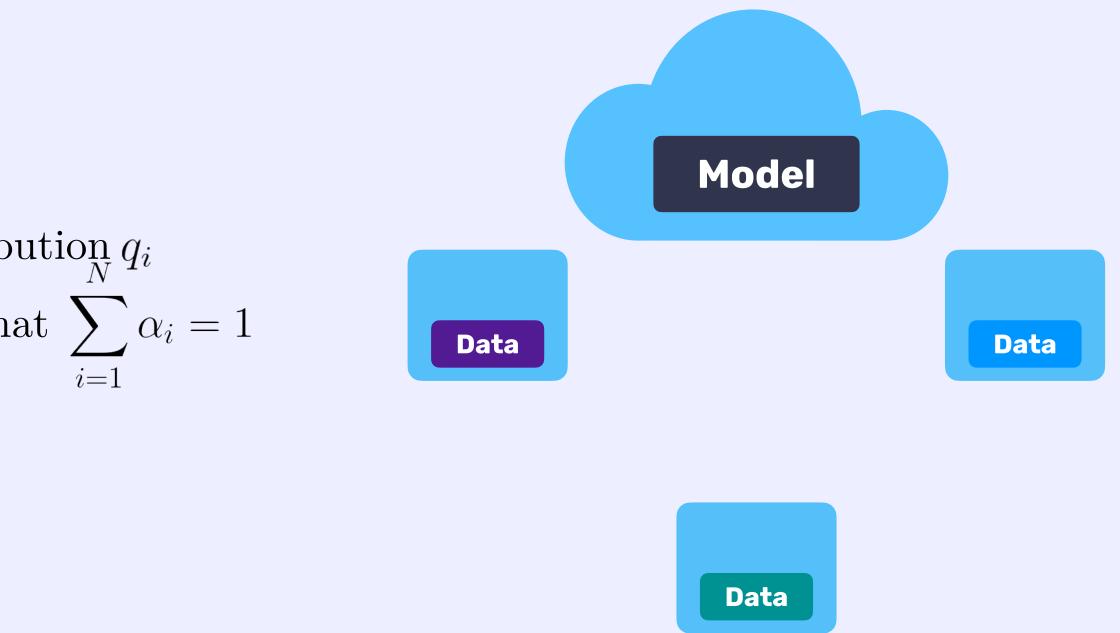
Practical Solving

Numerical Experiments and Comparisons

Measuring Conformity in Federated Learning

• Modeling Heterogeneity on training devices

- We dispose of N training devices.
- Each training device is characterized by a distribution q_i over some data space and a weight $\alpha_i > 0$ such that $\sum_{i=1}^{N} \alpha_i = 1$ <u>Base distribution</u> $p_{\alpha} = \sum_{i=1}^{N} \alpha_i q_i$



Measuring Conformity in Federated Learning

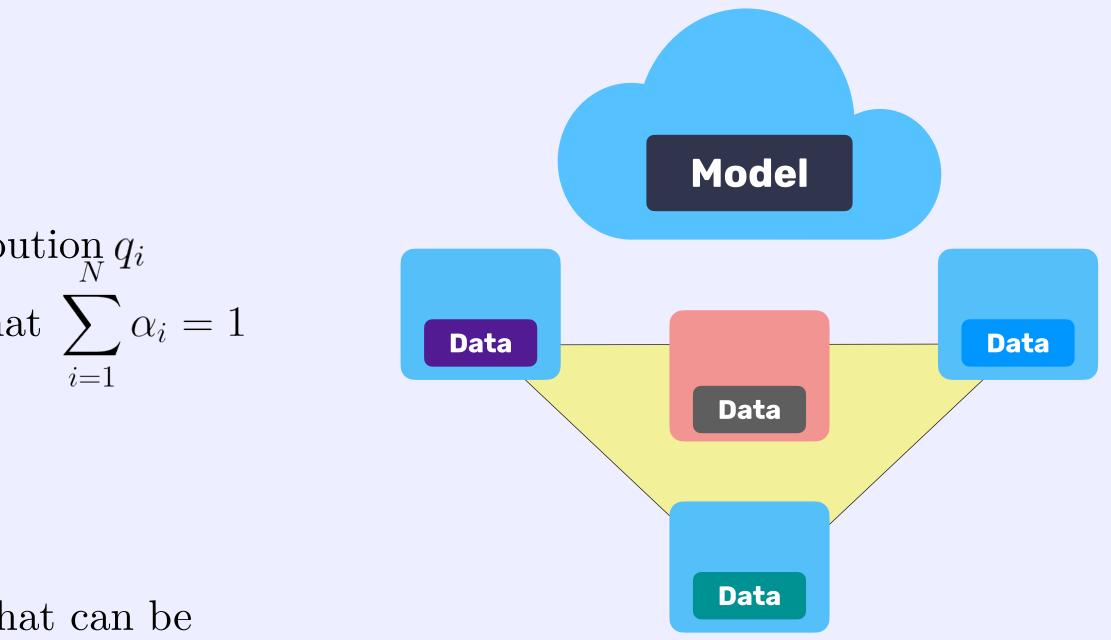
• Modeling Heterogeneity on training devices

- We dispose of N training devices.
- Each training device is characterized by a distribution q_i over some data space and a weight $\alpha_i > 0$ such that $\sum_{i=1}^{N} \alpha_i = 1$ <u>Base distribution</u> $p_{\alpha} = \sum_{i=1}^{N} \alpha_i q_i$

Measuring conformity on testing devices

We consider test devices to have a distribution that can be written as a mixture of the training distributions.

$$p_{\pi} = \sum_{i=1}^{N} \pi_i \alpha_i \qquad \pi \in \Delta_{N-1} \text{ ie } \begin{cases} 0 \le \pi_k \le 1 & \text{for all } 1 \le i \le N \\ \sum_{k=1}^{N} \pi_k = 1 \end{cases}$$



Measuring Conformity in Federated Learning

Modeling Heterogeneity on training devices

- We dispose of N training devices.
- Each training device is characterized by a distribution q_i over some data space and a weight $\alpha_i > 0$ such that $\sum_{i=1}^{N} \alpha_i = 1$ <u>Base distribution</u> $p_{\alpha} = \sum_{i=1}^{n} \alpha_i q_i$

Measuring conformity on testing devices

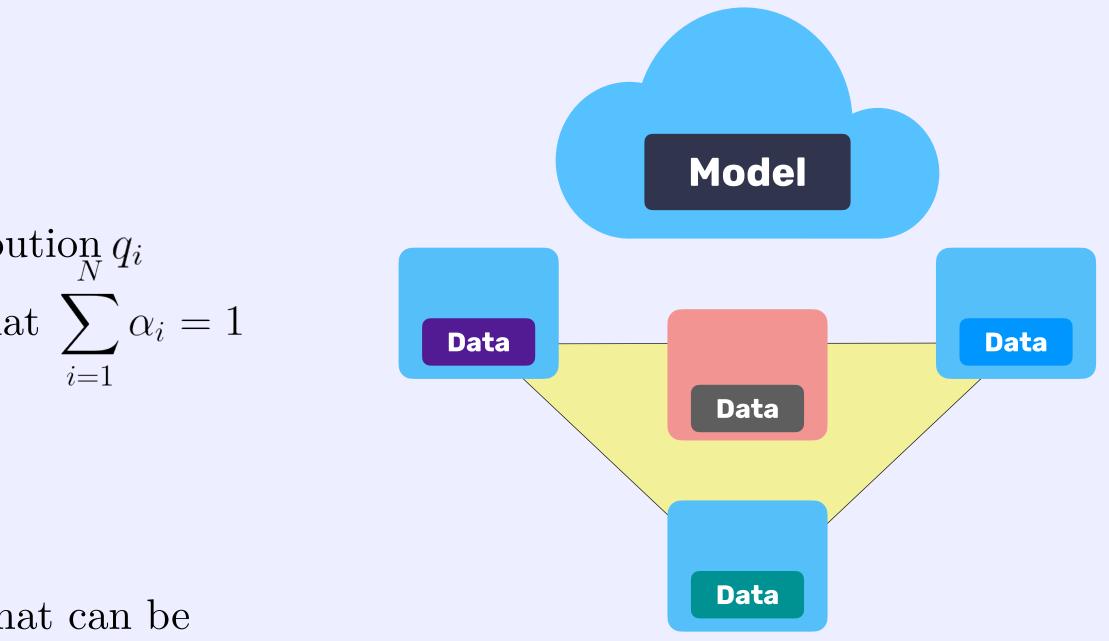
We consider test devices to have a distribution that can be written as a mixture of the training distributions.

$$p_{\pi} = \sum_{i=1}^{N} \pi_i \alpha_i \qquad \pi \in \Delta_{N-1} \text{ ie } \begin{cases} 0 \le \pi_k \le 1 & \text{for all } 1 \le i \le N \\ \sum_{k=1}^{N} \pi_k = 1 \end{cases}$$

The conformity $\operatorname{conf}(p_{\pi}) \in [0, 1]$ of a mixture p_{π} with weight π is defined as:

$$\operatorname{conf}(p_{\pi}) = \min_{i \in \{1, \dots, N\}} \alpha_i /$$

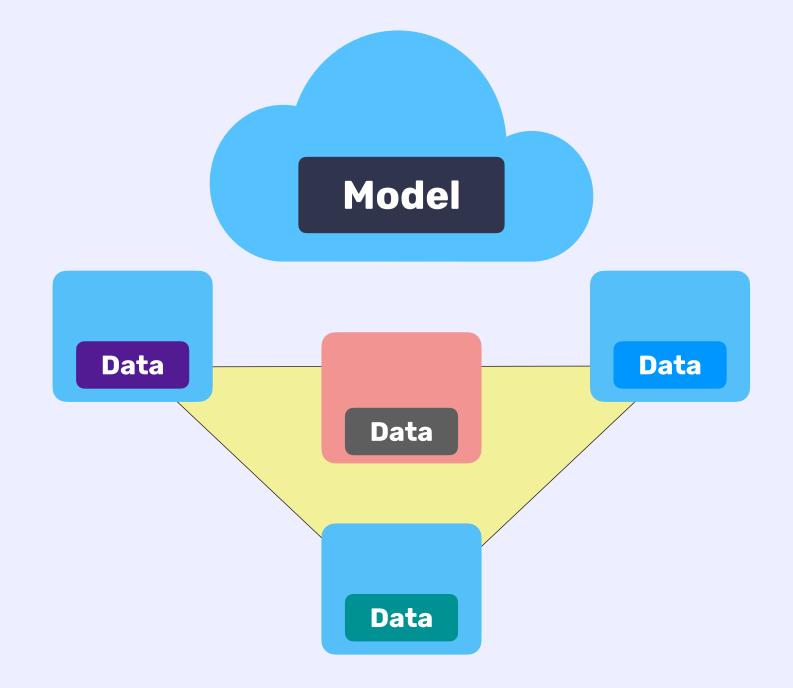
The conformity of a device refers to the conformity of its data distribution.



 π_i

6

The Δ -FL Framework

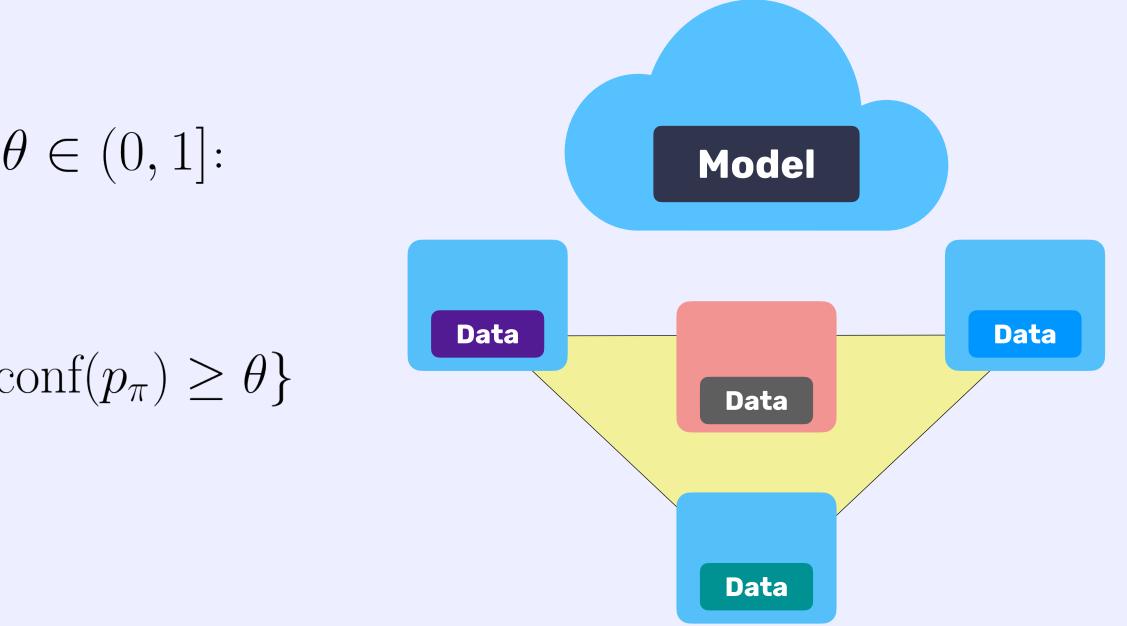


The $\Delta\text{-FL}$ Framework

\Box Δ -FL's Objective

We propose to solve for a conformity parameter. $\theta \in (0, 1]$:

$$\min_{v \in \mathbb{R}^d} \left[F_{\theta}(w) = \max_{\pi \in \mathcal{P}_{\theta}} \mathbb{E}_{\xi \sim p_{\pi}}[f(w,\xi)] \right] \text{ where}$$
$$\mathcal{P}_{\theta} := \{ \pi \in \Delta_{N-1} : c \}$$



The $\Delta\text{-FL}$ Framework

\Box Δ -FL's Objective

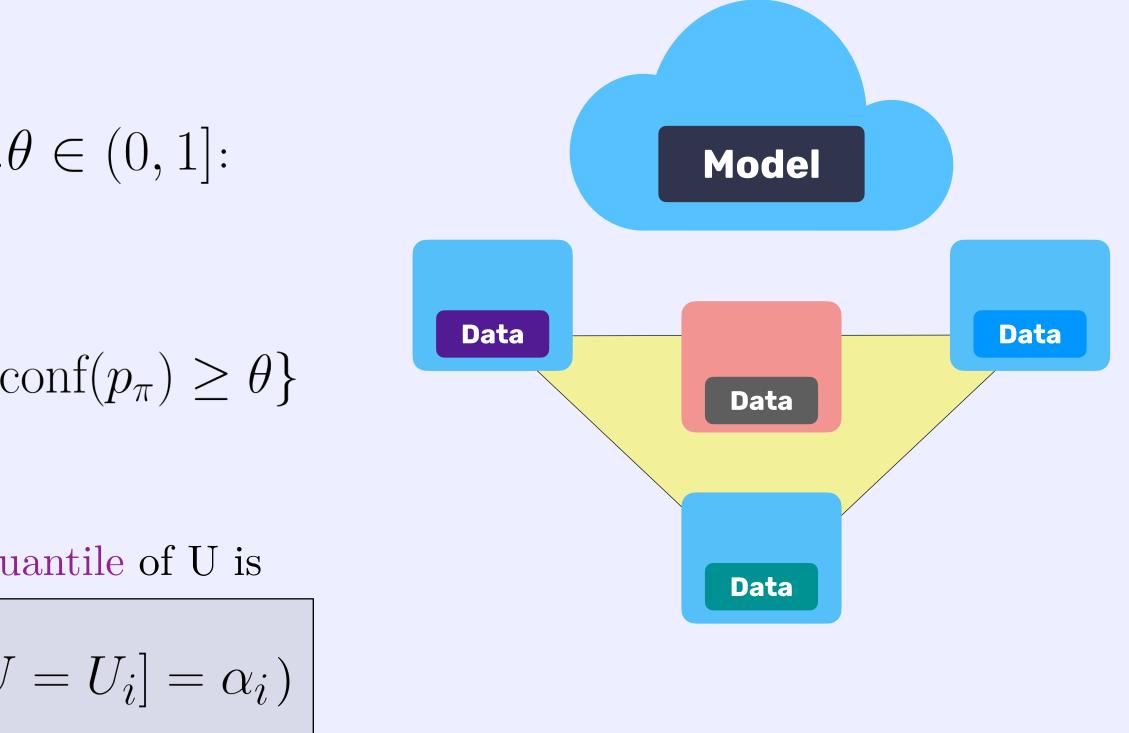
We propose to solve for a conformity parameter. $\theta \in (0, 1]$:

$$\min_{w \in \mathbb{R}^d} \begin{bmatrix} F_{\theta}(w) = \max_{\pi \in \mathcal{P}_{\theta}} \mathbb{E}_{\xi \sim p_{\pi}}[f(w,\xi)] \end{bmatrix} \text{ where}$$
$$\mathcal{P}_{\theta} := \{\pi \in \Delta_{N-1} : \phi \in \mathcal{P}_{\theta} \in \Phi_{N-1} : \phi \in \Phi$$

Superquantile loss

For any random variable $U: \Omega \to \mathbb{R}$ the superquantile of U is

$$S_{\theta}(U) = \sup_{\substack{\pi \in \Delta_{N-1} \\ 0 \le \frac{\pi_i}{\alpha_i} \le \frac{1}{\theta}}} \sum_{i=1}^{N} \pi_i U_i \quad (\text{when } \mathbb{P}[U]$$



The $\Delta\text{-FL}$ Framework

\Box Δ -FL's Objective

We propose to solve for a conformity parameter $\theta \in (0, 1]$:

$$\min_{w \in \mathbb{R}^d} \begin{bmatrix} F_{\theta}(w) = \max_{\pi \in \mathcal{P}_{\theta}} \mathbb{E}_{\xi \sim p_{\pi}}[f(w,\xi)] \end{bmatrix} \text{ where}$$
$$\mathcal{P}_{\theta} := \{\pi \in \Delta_{N-1} : \phi \in \mathcal{P}_{\theta} \in \Phi_{N-1} : \phi \in \Phi$$

Superquantile loss

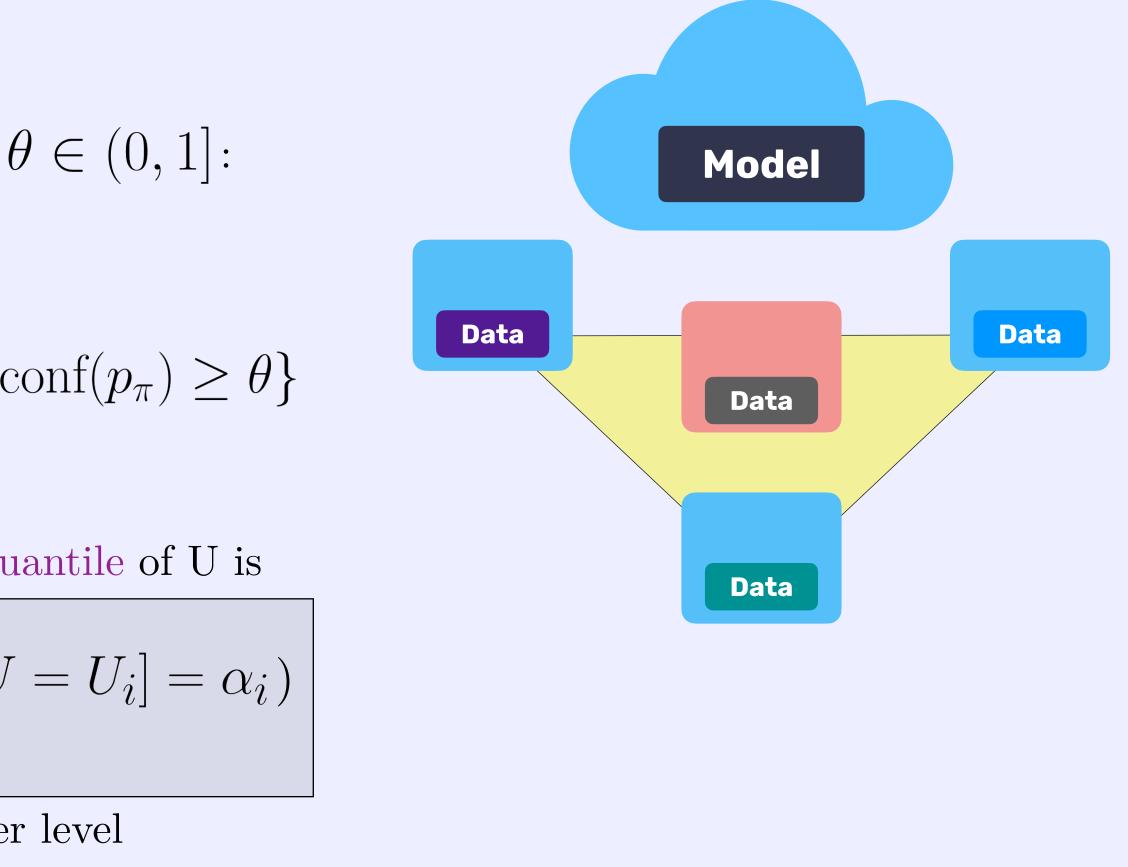
For any random variable $U: \Omega \to \mathbb{R}$ the superquantile of U is

$$S_{\theta}(U) = \sup_{\substack{\pi \in \Delta_{N-1} \\ 0 \le \frac{\pi_i}{\alpha_i} \le \frac{1}{\theta}}} \sum_{i=1}^{N} \pi_i U_i \quad (\text{when } \mathbb{P}[U]$$

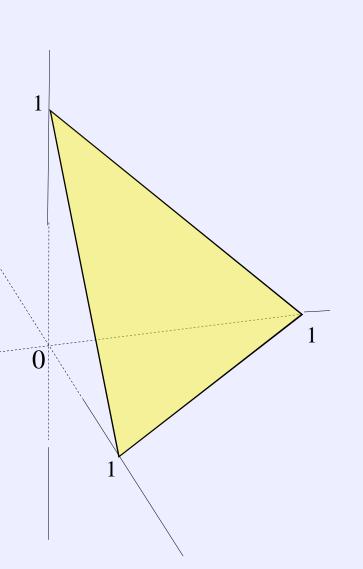
In Δ -FL, we are using the superquantile at a user level

$$U = \mathbb{E}[F_{\mathbf{k}}(w)] = \mathbb{E}_{\xi \sim q_{\mathbf{k}}}[f(w,\xi)] \quad \mathbf{v}$$

$$F_{\theta}(w) = S_{\theta}(F_{\mathbf{k}}(w))$$

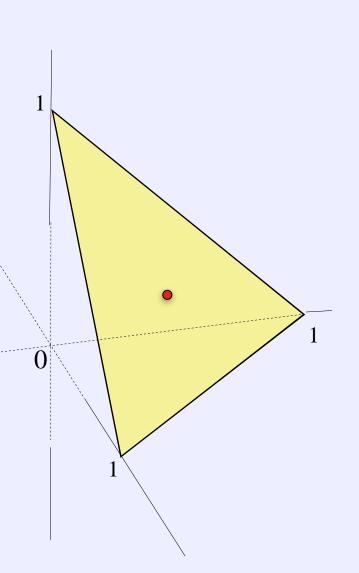


with $\mathbb{P}[\mathbf{k}=i] = \alpha_i$



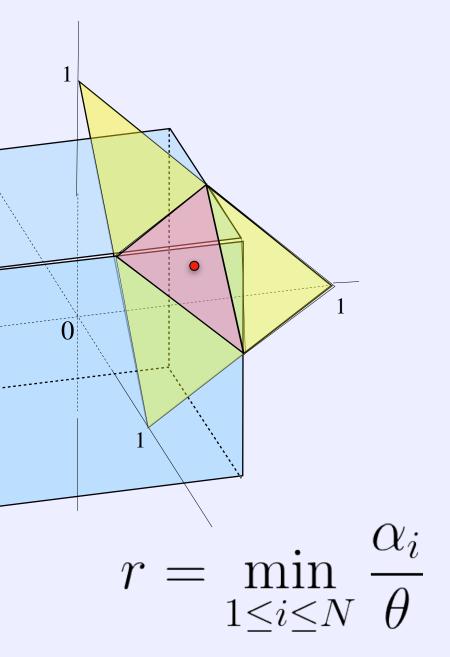
• Assume we have only three users at training time

 $\alpha = (1/3, 1/3, 1/3)$



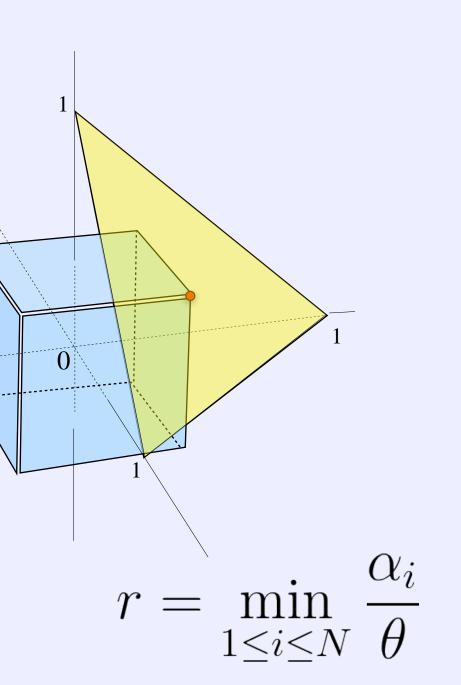
$$F_{\theta}(w) = \sup_{\substack{\pi \in \mathbb{R}^3 \\ 0 \le 3\pi \le \frac{1}{\theta} \\ \pi_1 + \pi_2 + \pi_3 = 1}} \sum_{i=1}^3 \pi_i F_i(w)$$

$$\alpha = (1/3, 1/3, 1/3)$$



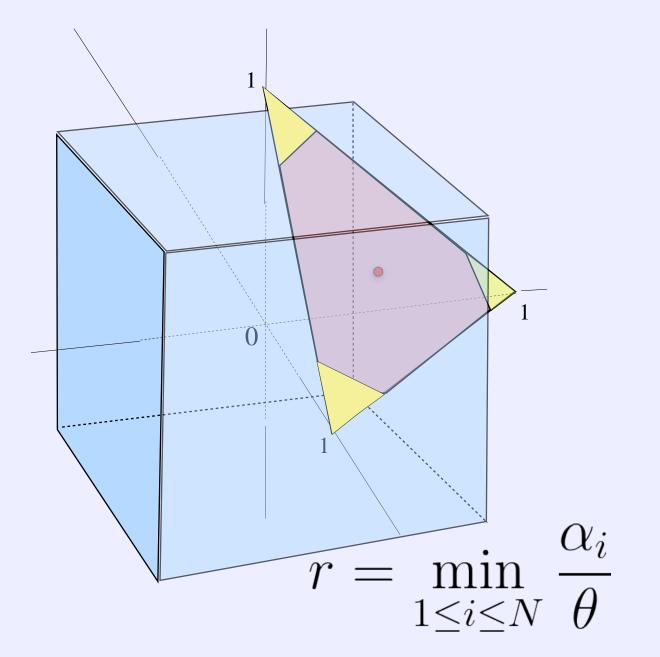
$$F_{\theta}(w) = \sup_{\substack{\pi \in \mathbb{R}^3 \\ 0 \le 3\pi \le \frac{1}{\theta} \\ \pi_1 + \pi_2 + \pi_3 = 1}} \sum_{i=1}^3 \pi_i F_i(w)$$

$$\alpha = (1/3, 1/3, 1/3)$$



$$F_{\theta}(w) = \sup_{\substack{\pi \in \mathbb{R}^3 \\ 0 \le 3\pi \le \frac{1}{\theta} \\ \pi_1 + \pi_2 + \pi_3 = 1}} \sum_{i=1}^3 \pi_i F_i(w)$$

$$\alpha = (1/3, 1/3, 1/3)$$



• Let us fix a conformity level $\theta \in (0, 1]$,

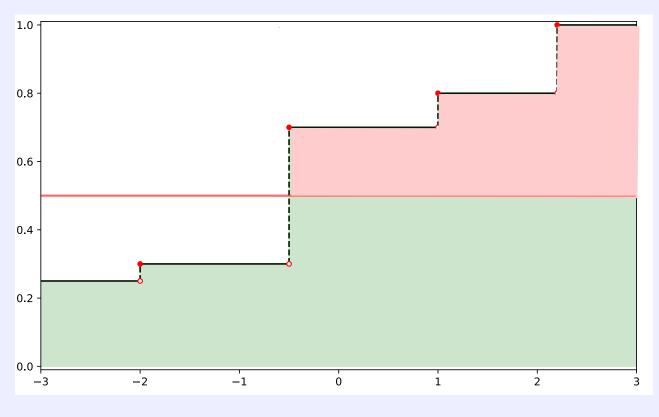
 $F_{\theta}(w) = S_{\theta}(F_{\mathbf{k}}(w)) \qquad \qquad U =$

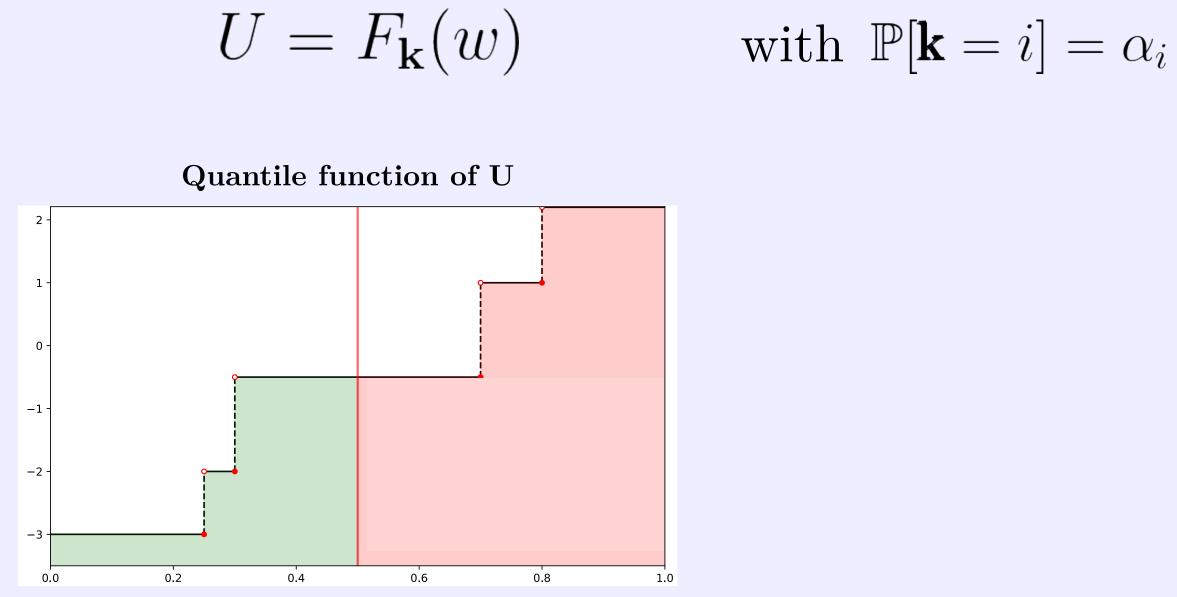
$U = F_{\mathbf{k}}(w) \qquad \text{with } \mathbb{P}[\mathbf{k} = i] = \alpha_i$

• Let us fix a conformity level $\theta \in (0, 1]$,

$$F_{\theta}(w) = S_{\theta}(F_{\mathbf{k}}(w)) \qquad \qquad U =$$

Cumulative distribution function of U





 $F_U(t) = \mathbb{P}[U \le t]$

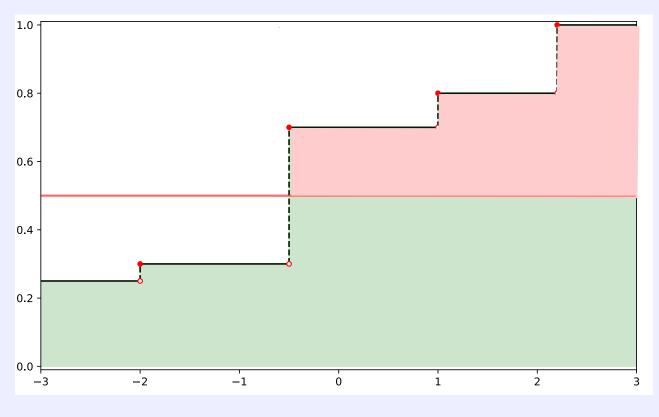
 $Q_p(U) = \inf\{t \in \mathbb{R}, F_U(t) \ge p\}$

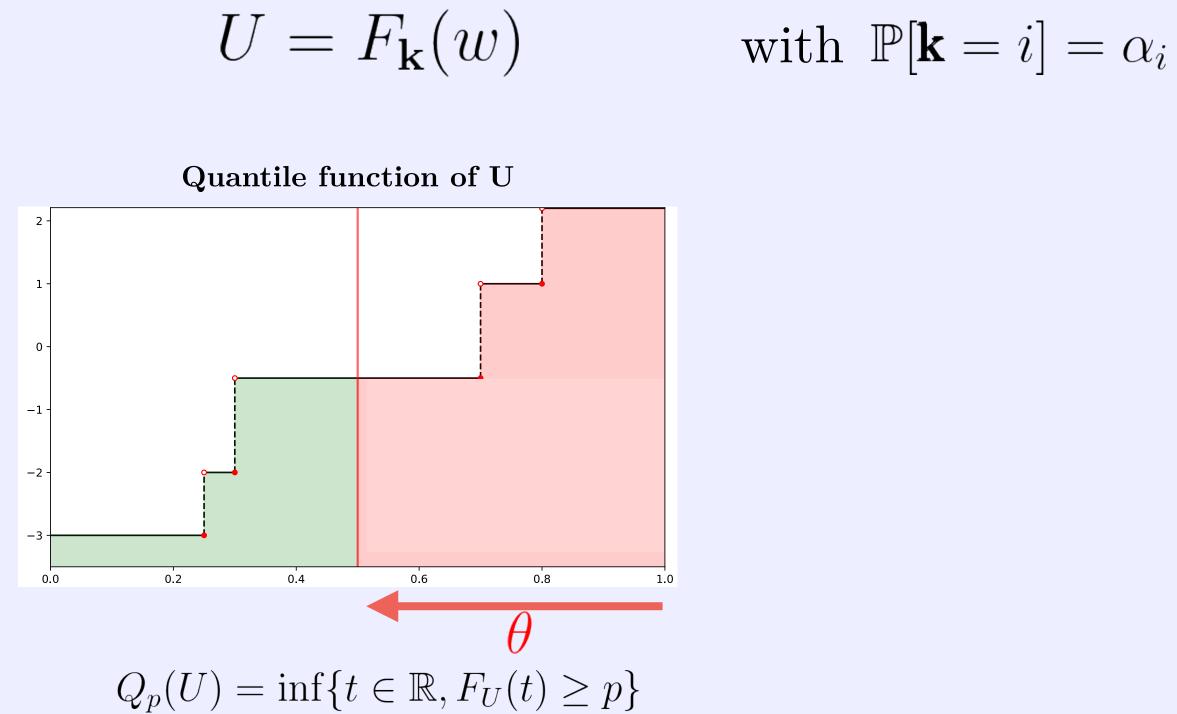
9

• Let us fix a conformity level $\theta \in (0, 1]$,

$$F_{\theta}(w) = S_{\theta}(F_{\mathbf{k}}(w)) \qquad \qquad U =$$

Cumulative distribution function of U



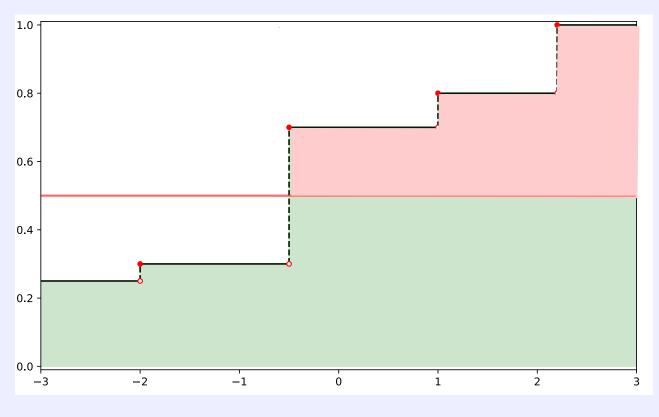


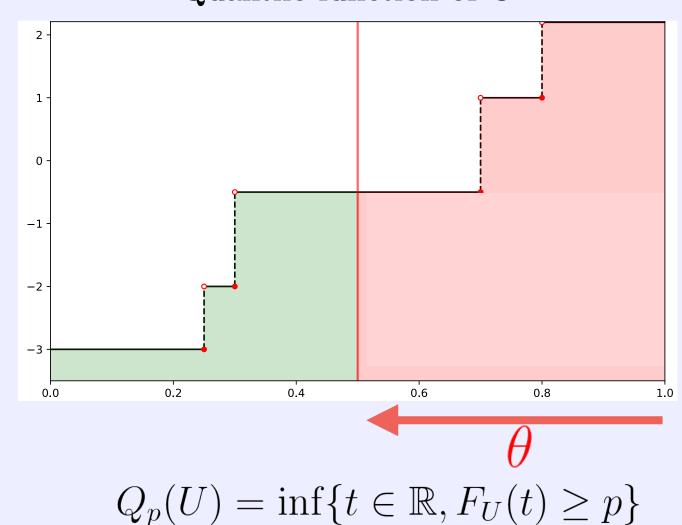
 $F_U(t) = \mathbb{P}[U \le t]$

• Let us fix a conformity level $\theta \in (0, 1]$,

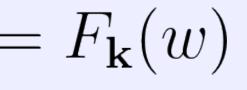
$$F_{\theta}(w) = S_{\theta}(F_{\mathbf{k}}(w)) \qquad \qquad U =$$

Cumulative distribution function of U





 $F_U(t) = \mathbb{P}[U \le t]$



with
$$\mathbb{P}[\mathbf{k}=i] = \alpha_i$$

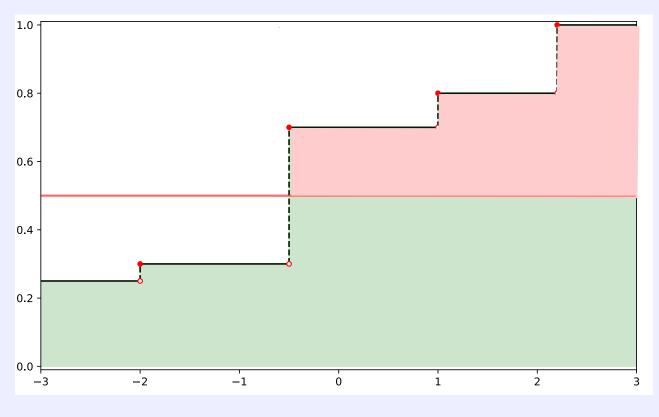
Quantile function of U

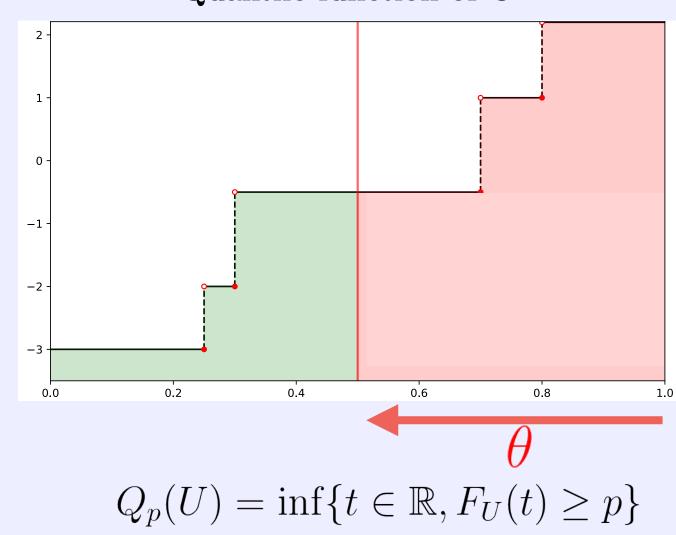
$$S_{\theta}(U) = \frac{1}{\theta} \int_{p=1-\theta}^{1} Q_p(U)$$
$$S_1(U) = \mathbb{E}[U]$$
$$S_0(U) = \max(U)$$

• Let us fix a conformity level $\theta \in (0, 1]$,

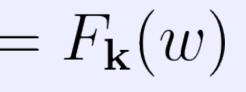
$$F_{\theta}(w) = S_{\theta}(F_{\mathbf{k}}(w)) \qquad \qquad U =$$

Cumulative distribution function of U



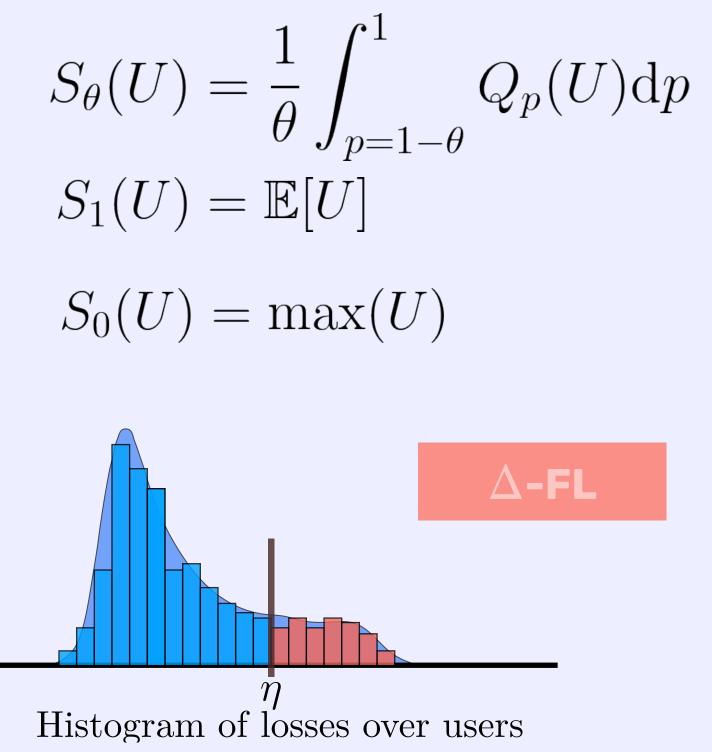


 $F_U(t) = \mathbb{P}[U \le t]$



with
$$\mathbb{P}[\mathbf{k}=i] = \alpha_i$$

Quantile function of U



Rockafellar's Duality Result

A Duality Result for superquantiles [Rockafellar 2000'] For any $\theta \in (0, 1]$, and any discrete random variable U, $S_{\theta}(U) = \min_{\eta \in \mathbb{R}} \eta$ $Q_p(U) = \operatorname{argm}_{\pi}$

$$+ \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$$

in $\eta + \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$
 \mathbb{R}

Rockafellar's Duality Result

• A Duality Result for superquantiles [Rockafellar 2000'] For any $\theta \in (0, 1]$, and any discrete random variable U, $S_{\theta}(U) = \min_{\eta \in \mathbb{R}} \eta$ $Q_p(U) = \underset{\eta \in \mathbb{R}}{\operatorname{argmi}}$ $= 1 - \theta$

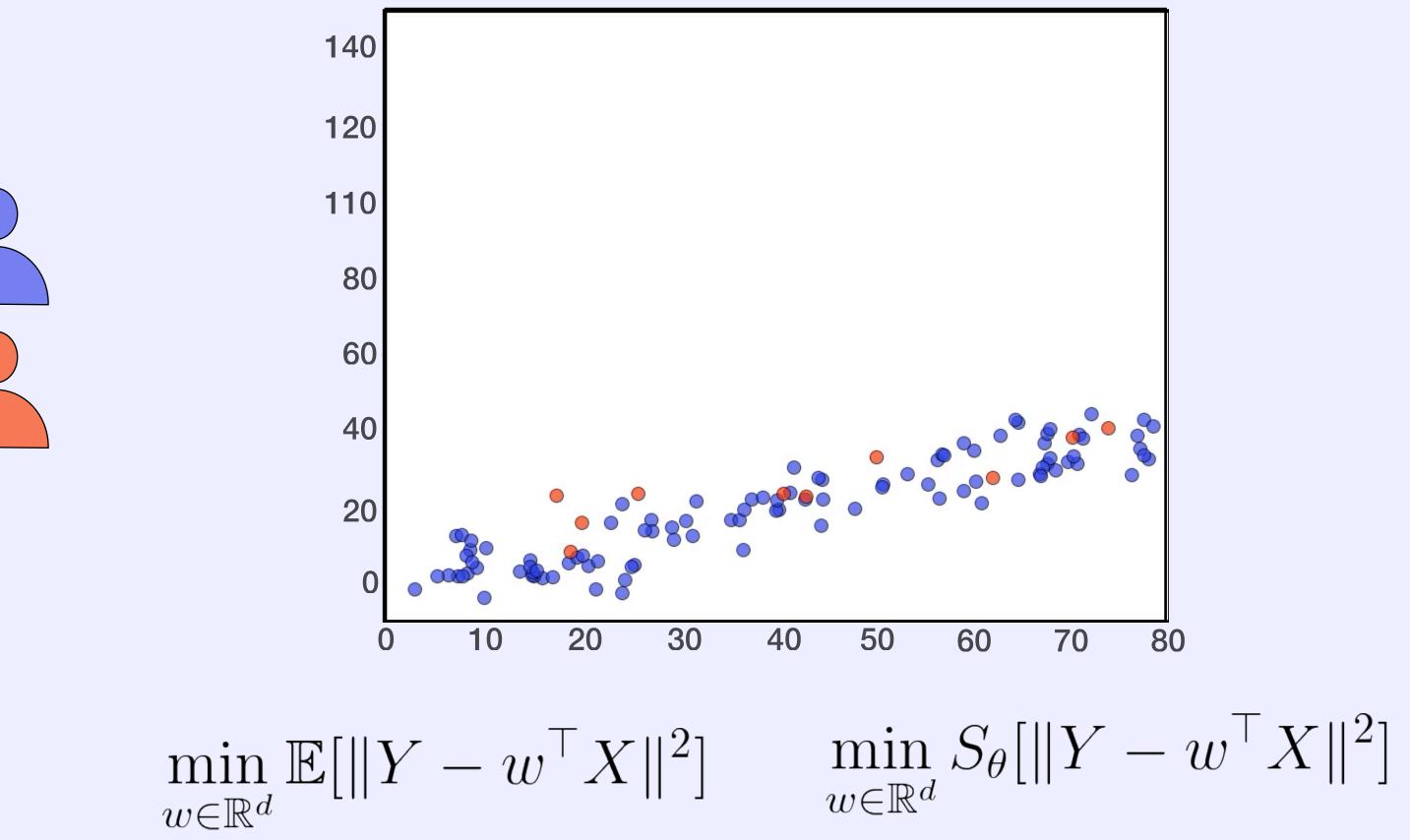
In our case, we can rewrite Δ -FL's objective as a joint minimization problem:

$$\min_{w \in \mathbb{R}^d} F_{\theta}(w) = \min_{w \in \mathbb{R}^d} S_{\theta}(F_{\mathbf{k}}(w)) = \min_{w \in \mathbb{R}^d, \eta \in \mathbb{R}} \eta + \frac{1}{\theta} \sum_{i=1}^N \alpha_i \max(F_i(w) - \eta, 0)$$

$$+ \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$$

in $\eta + \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$
 \mathbb{R}

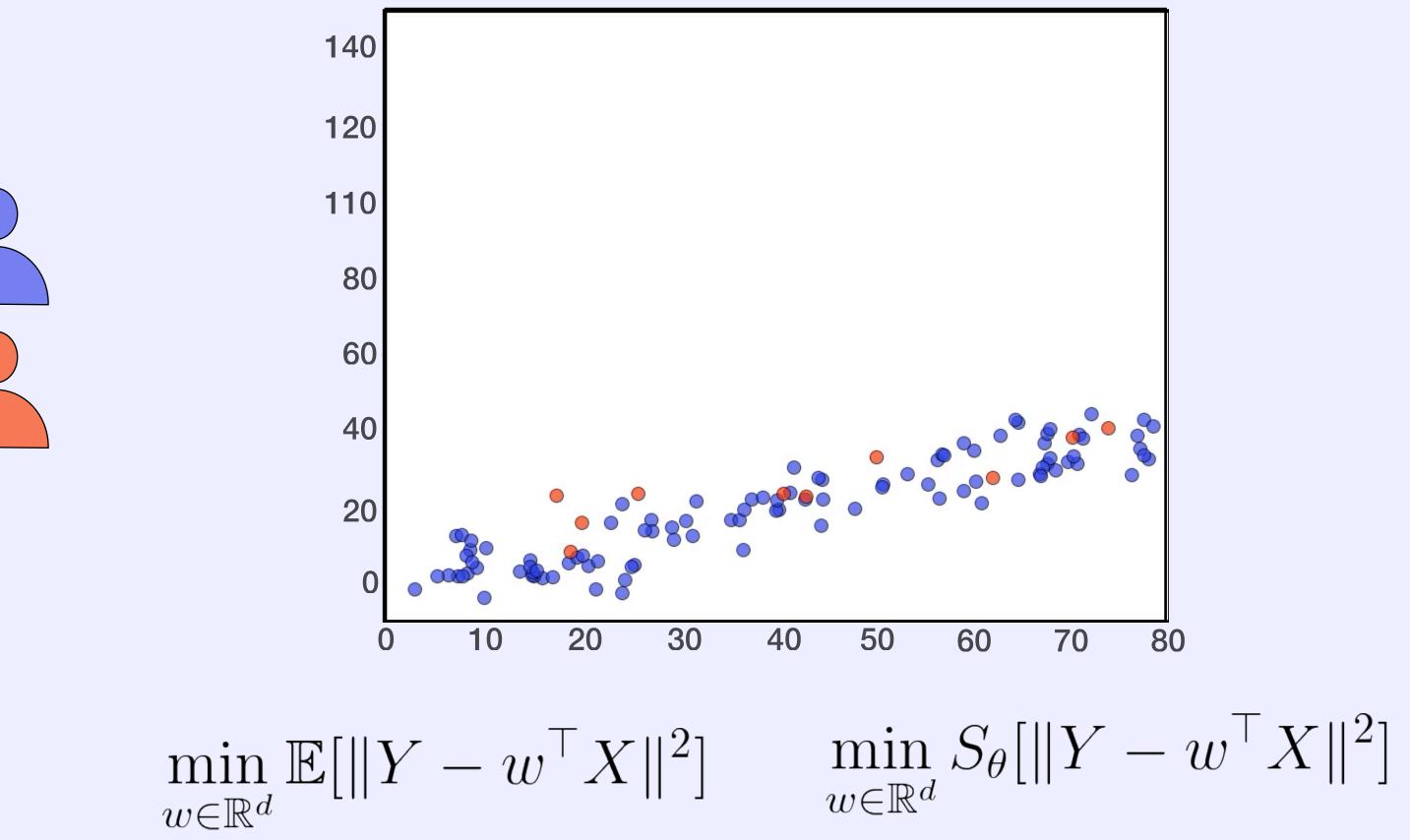
A centralized problem: least squares regression



Toy Problem 1

on
$$\min_{w \in \mathbb{R}^d} \left\| Y - w^\top X \right\|^2$$

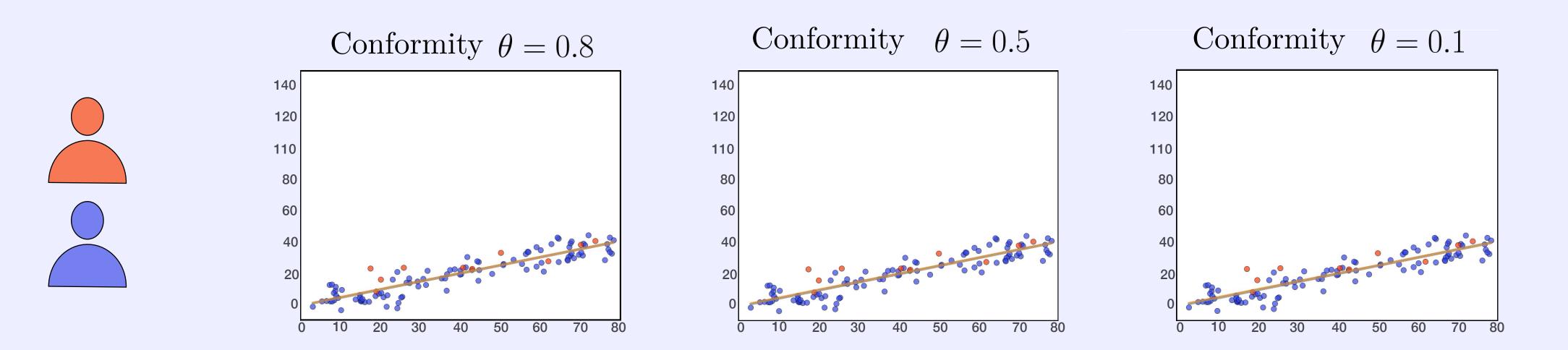
A centralized problem: least squares regression



Toy Problem 1

on
$$\min_{w \in \mathbb{R}^d} \left\| Y - w^\top X \right\|^2$$

• A centralized problem: least squares regression



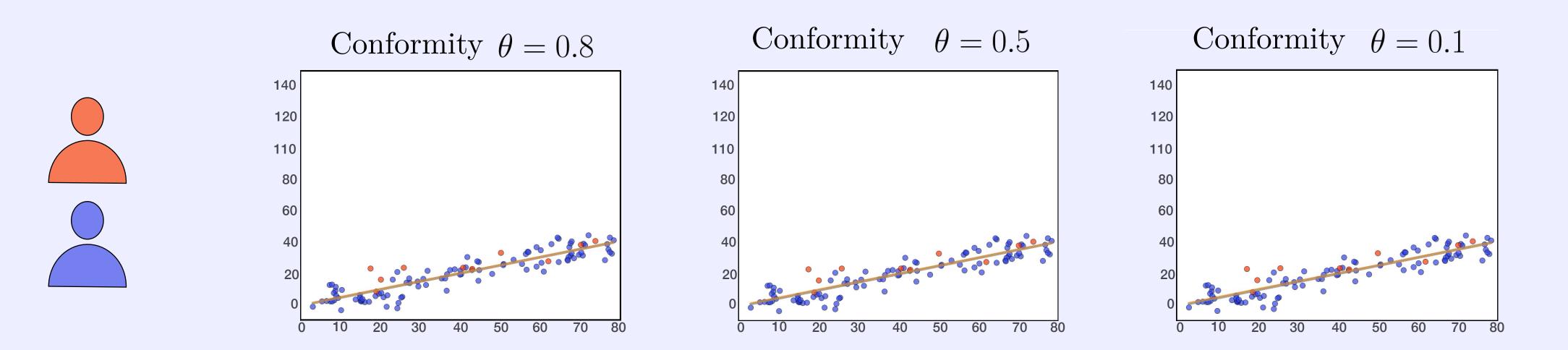
 $\min_{w \in \mathbb{R}^d} \mathbb{E}[\|Y - w^\top X\|^2]$

Toy Problem 1

on
$$\min_{w \in \mathbb{R}^d} \left\| Y - w^\top X \right\|^2$$

$$\lim_{w \in \mathbb{R}^d} S_{\theta}[\|Y - w^{\top}X\|^2]$$

• A centralized problem: least squares regression



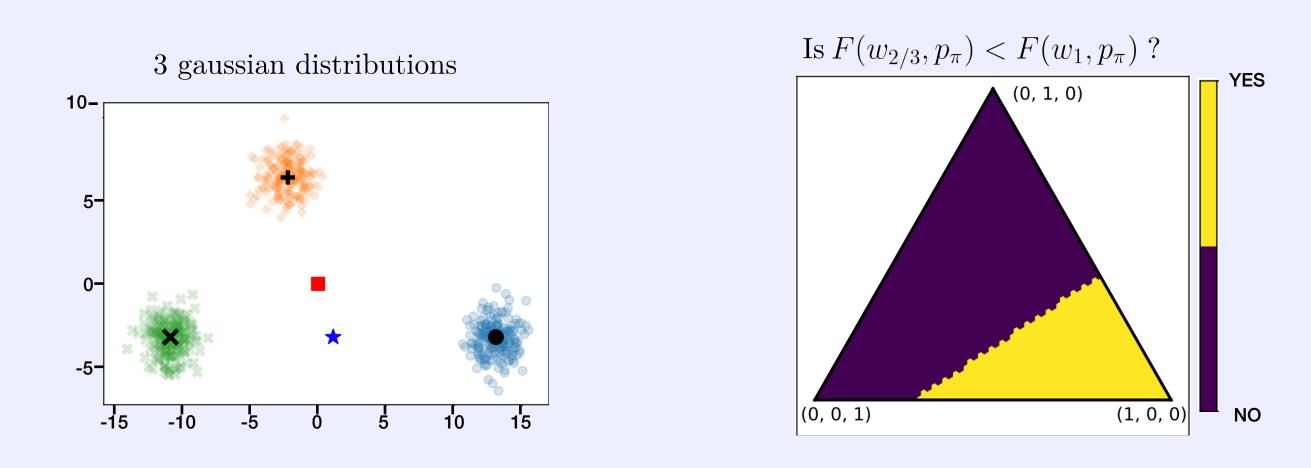
 $\min_{w \in \mathbb{R}^d} \mathbb{E}[\|Y - w^\top X\|^2]$

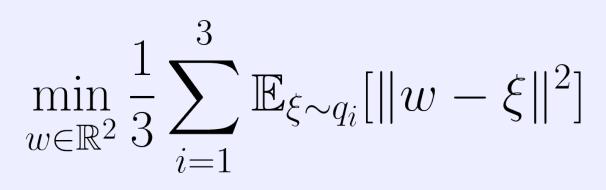
Toy Problem 1

on
$$\min_{w \in \mathbb{R}^d} \left\| Y - w^\top X \right\|^2$$

$$\lim_{w \in \mathbb{R}^d} S_{\theta}[\|Y - w^{\top}X\|^2]$$

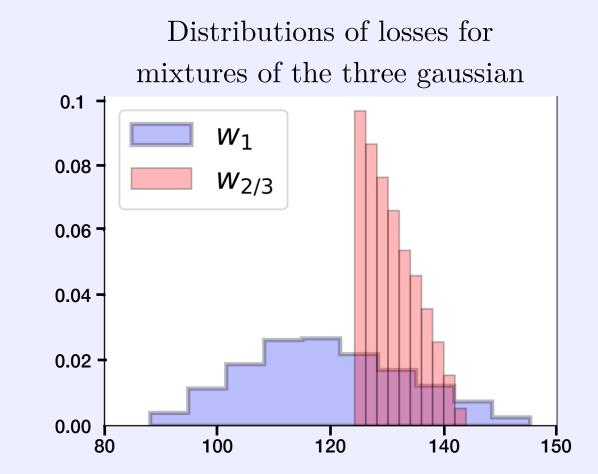
• A distributed problem: mean estimation



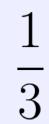


Toy Problem 2

$\min_{w \in \mathbb{R}^2} \mathbb{E}[\|w - \xi\|^2]$



$$\min_{w \in \mathbb{R}^2} S_{2/3}(\mathbb{E}_{\xi \sim q_{\mathbf{k}}}[\|w - \xi\|^2]) \qquad \mathbb{P}[\mathbf{k} = i] =$$

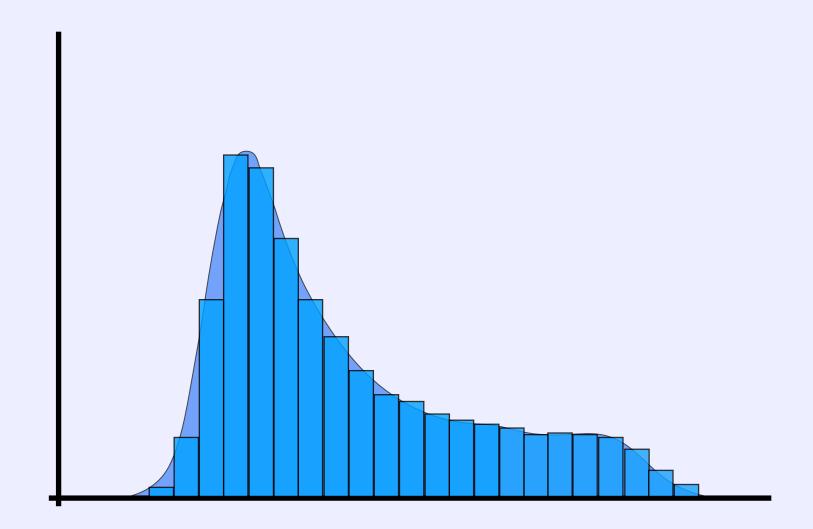


Practice

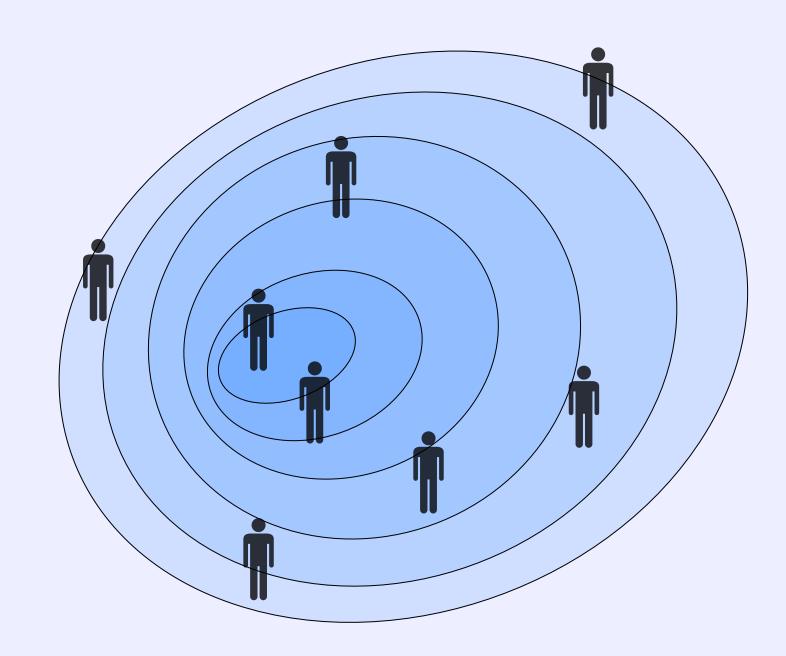
Numerical Experiments and Comparisons

Minimizing the worst-case losses

• Our framework focuses on the worst-cases losses

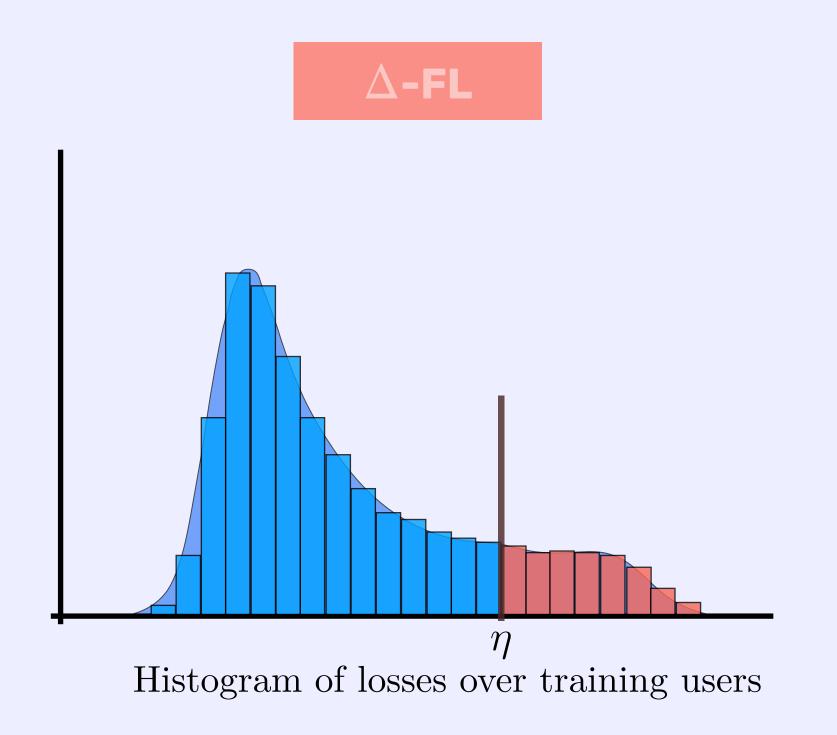


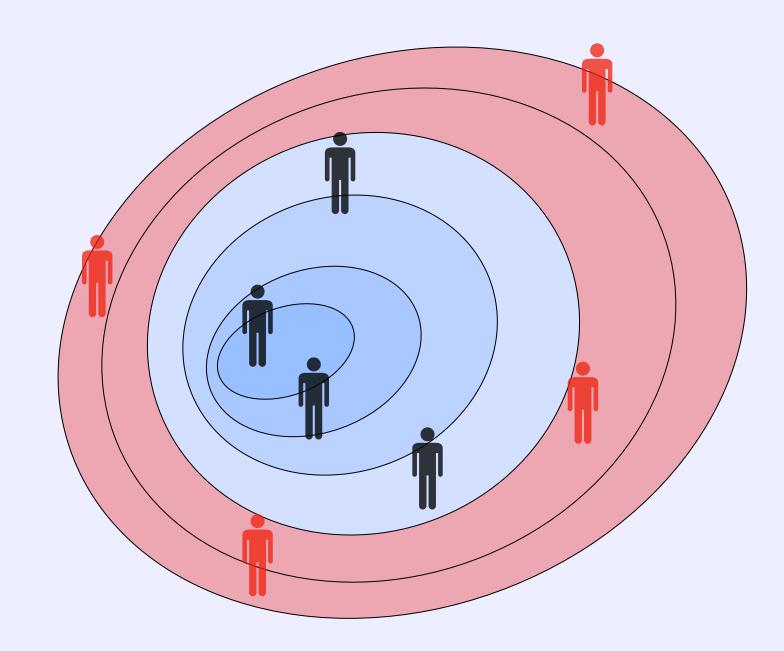
Histogram of losses over training users



Minimizing the worst-case losses

• Our framework focuses on the worst-cases losses





An Alternating Minimization Scheme

We propose to alternatively minimise:

$$G: w, \eta \mapsto \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i \max(F_i(w) - \eta, 0)$$

ALTERNATING MINIMIZATION FOR $\Delta\text{-FL}$

Starting point $w_0 \in \mathbb{R}^d$ Input Inexactness sequence $(\varepsilon_t)_{t \ge 0}$

• Time horizon $t^* \in \mathbb{N}$

for
$$t = 0, 1, \dots, t^{\star} - 1$$
 do

 $\eta_t \in \underset{\eta \in \mathbb{R}}{\operatorname{argmin}} G(w_t, \eta)$ $\eta \in \mathbb{R}$ $w_t \simeq \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} G(w, \eta_t) \text{ such that } \mathbb{E}[G(\eta_t)]$

return w_{t^\star}

$$[w_{t+1}, \eta_t)|w_t] - \min_{w \in \mathbb{R}^d} G(w, \eta_t) \le \varepsilon_t$$

An Alternating Minimization Scheme

We propose to alternatively minimise:

$$G: w, \eta \mapsto \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i \max(F_i(w) - \eta, 0)$$

ALTERNATING MINIMIZATION FOR Δ -FL • Starting point $w_0 \in \mathbb{R}^d$ • Inexactness sequence $(\varepsilon_t)_{t>0}$ Input • Time horizon $t^* \in \mathbb{N}$ for $t = 0, 1, \dots, t^{\star} - 1$ do $\eta_t \in \underset{\eta \in \mathbb{R}}{\operatorname{argmin}} G(w_t, \eta) \quad \text{(quantile computation)}$ $w_t \simeq \operatorname{argmin} G(w, \eta_t)$ such that $\mathbb{E}[G(w_t)]$ $w \in \mathbb{R}^d$ return $w_{t^{\star}}$

$$[w_{t+1}, \eta_t)|w_t] - \min_{w \in \mathbb{R}^d} G(w, \eta_t) \le \varepsilon_t$$

An Alternating Minimization Scheme

We propose to alternatively minimise:

$$G: w, \eta \mapsto \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i \max(F_i(w) - \eta, 0)$$

ALTERNATING MINIMIZATION FOR Δ -FL • Starting point $w_0 \in \mathbb{R}^d$ • Inexactness sequence $(\varepsilon_t)_{t>0}$ Input • Time horizon $t^* \in \mathbb{N}$ for $t = 0, 1, \dots, t^{\star} - 1$ do $\eta_t \in \underset{\eta \in \mathbb{R}}{\operatorname{argmin}} G(w_t, \eta) \quad \text{(quantile computation)}$ $w_t \simeq \operatorname{argmin} G(w, \eta_t)$ such that $\mathbb{E}[G(w, \eta_t)]$ $w \in \mathbb{R}^d$ return w_{t^\star}

$$[w_{t+1}, \eta_t)|w_t] - \min_{w \in \mathbb{R}^d} G(w, \eta_t) \le \varepsilon_t$$

(Mini-batch SGD) (Local SGD)

A T

Smoothing the max term.

A non-smooth optimization problem

$$\min_{w \in \mathbb{R}^d} F_{\theta}(w) = \min_{w \in \mathbb{R}^d, \eta \in \mathbb{R}} \eta + \frac{1}{\theta} \sum_{i=1}^N$$

 $\sum_{i=1}^{n} \alpha_i \max(F_i(w) - \eta, 0)$

Smoothing the max term.

A non-smooth optimization problem

$$\min_{w \in \mathbb{R}^d} F_{\theta}(w) = \min_{w \in \mathbb{R}^d, \eta \in \mathbb{R}} \eta + \frac{1}{\theta} \sum_{i=1}^N$$

 $\int \alpha_i \max(F_i(w) - \eta, 0)$

Non-smooth term

Smoothing the max term.

A non-smooth optimization problem

$$\min_{w \in \mathbb{R}^d} F_{\theta}(w) = \min_{w \in \mathbb{R}^d, \eta \in \mathbb{R}} \eta + \frac{1}{\theta} \sum_{i=1}^N \alpha_i \max(F_i(w) - \eta, 0)$$

Non-smooth term
$$\max(t, 0) \simeq h_{\nu}(t) = \min_{s \in \mathbb{R}} \left\{ \max(s, 0) + \frac{(s-t)^2}{2\nu} \right\}$$

Smoothing the max term.

A non-smooth optimization problem

$$\min_{w \in \mathbb{R}^d} F_{\theta}(w) = \min_{w \in \mathbb{R}^d, \eta \in \mathbb{R}} \eta + \frac{1}{\theta} \sum_{i=1}^N \alpha_i \max(F_i(w) - \eta, 0)$$

Non-smooth term
$$\max(t, 0) \simeq h_{\nu}(t) = \min_{s \in \mathbb{R}} \left\{ \max(s, 0) + \frac{(s-t)^2}{2\nu} \right\}$$

• Assuming the F_i to be smooth, we consider the following smoothed regularised problem

$$\min_{w \in \mathbb{R}^d, \eta \in \mathbb{R}} \eta + \frac{1}{\theta} \sum_{i=1}^N \alpha_i h_\nu (F_i(w) - \eta) + \frac{\lambda}{2} \|w\|_2^2$$

 $G(w,\eta)$

- - - -

Convergence Result

Assumptions for Local SGD

The local losses F_i are convex *B*-Lipschitz and *L*-smooth

bounded variance σ_i^2 for the gradient with respect to w. Let $\sigma^2 = \alpha_1 \sigma_1^2 + \cdots + \alpha_N \sigma_N^2$

A last technical assumption [Koloskova et al. 2020]

$$\sum_{i=1}^{N} \alpha_i \left\| \frac{1}{\theta} \nabla_w h_{\nu}(F_k(w) - \eta) + \lambda w \right\|^2 \le D^2 + D_1 \left\| \nabla_w G(w, \eta) \right\|^2$$

Convergence Rate Result

Theorem

total number of T communication rounds to achieve \mathcal{E} accuracy with:

$$T = \mathcal{O}\left(\frac{\|\alpha\|_{\infty}\sigma^{2}\kappa^{2}}{\lambda\tau\varepsilon} + \sqrt{\frac{\sigma^{2}\kappa^{3}}{\lambda^{2}\tau\varepsilon}} + \sqrt{\frac{D^{2}\kappa^{4}}{\lambda\varepsilon}} + \kappa^{2}\right)$$

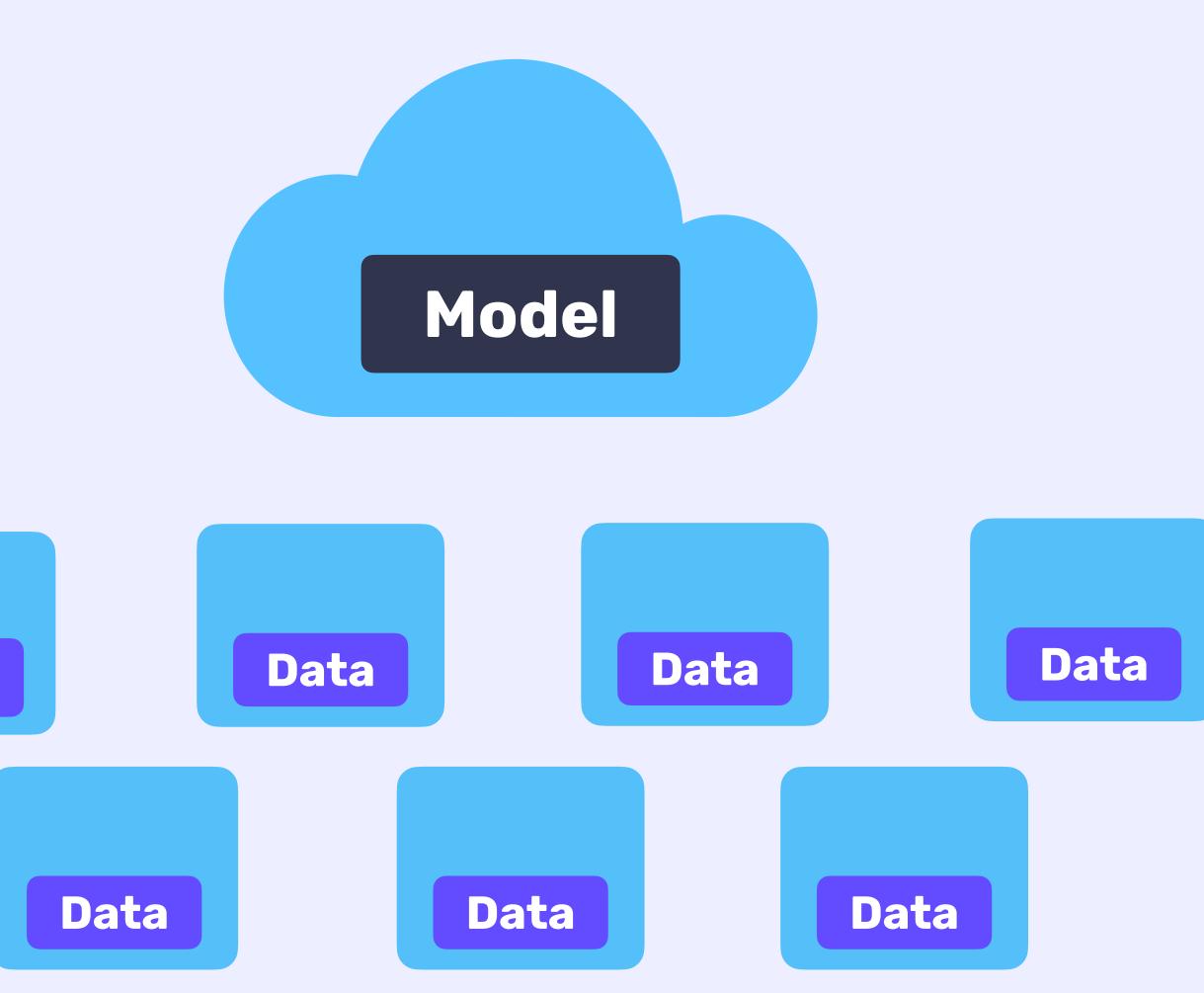
$$\widetilde{G}(w,\eta) = \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i h_\nu (F_i(w) - \eta) + \frac{\lambda}{2} ||w||_2^2$$

We dispose of an unbiased stochastic first-order oracle for the composition $w, \eta \mapsto h_{\nu}(F_i(w) - \eta)$ with

Under above assumptions, when running local SGD with respect to W with τ local steps, we bound the

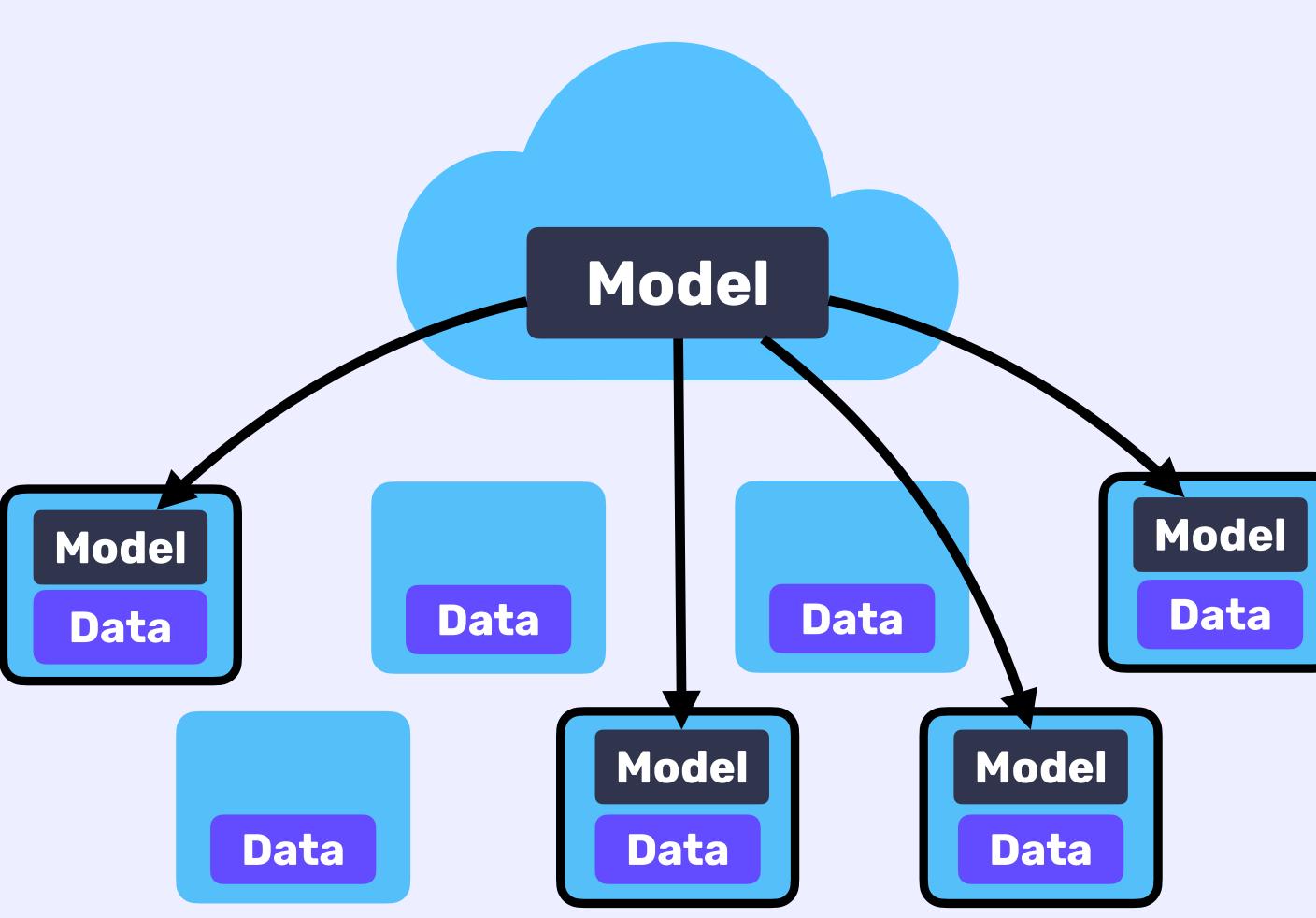
The practical algorithm on a picture

Data



The practical algorithm on a picture

The server broadcasts the model to a fleet of selected devices



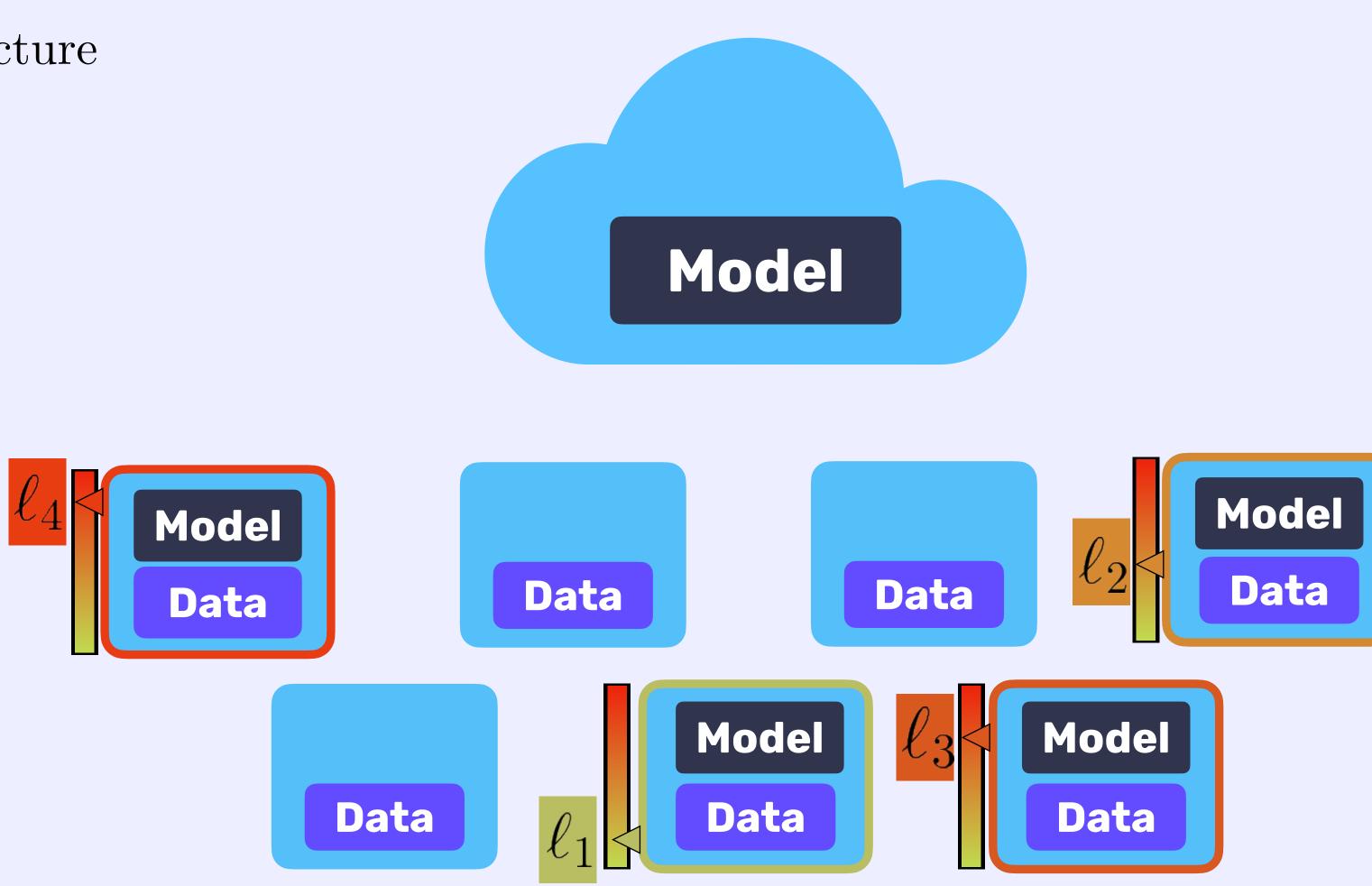
• The practical algorithm on a picture

The server broadcasts the model to a fleet of selected devices

2

1

Each device compute a local loss with respect to its own data



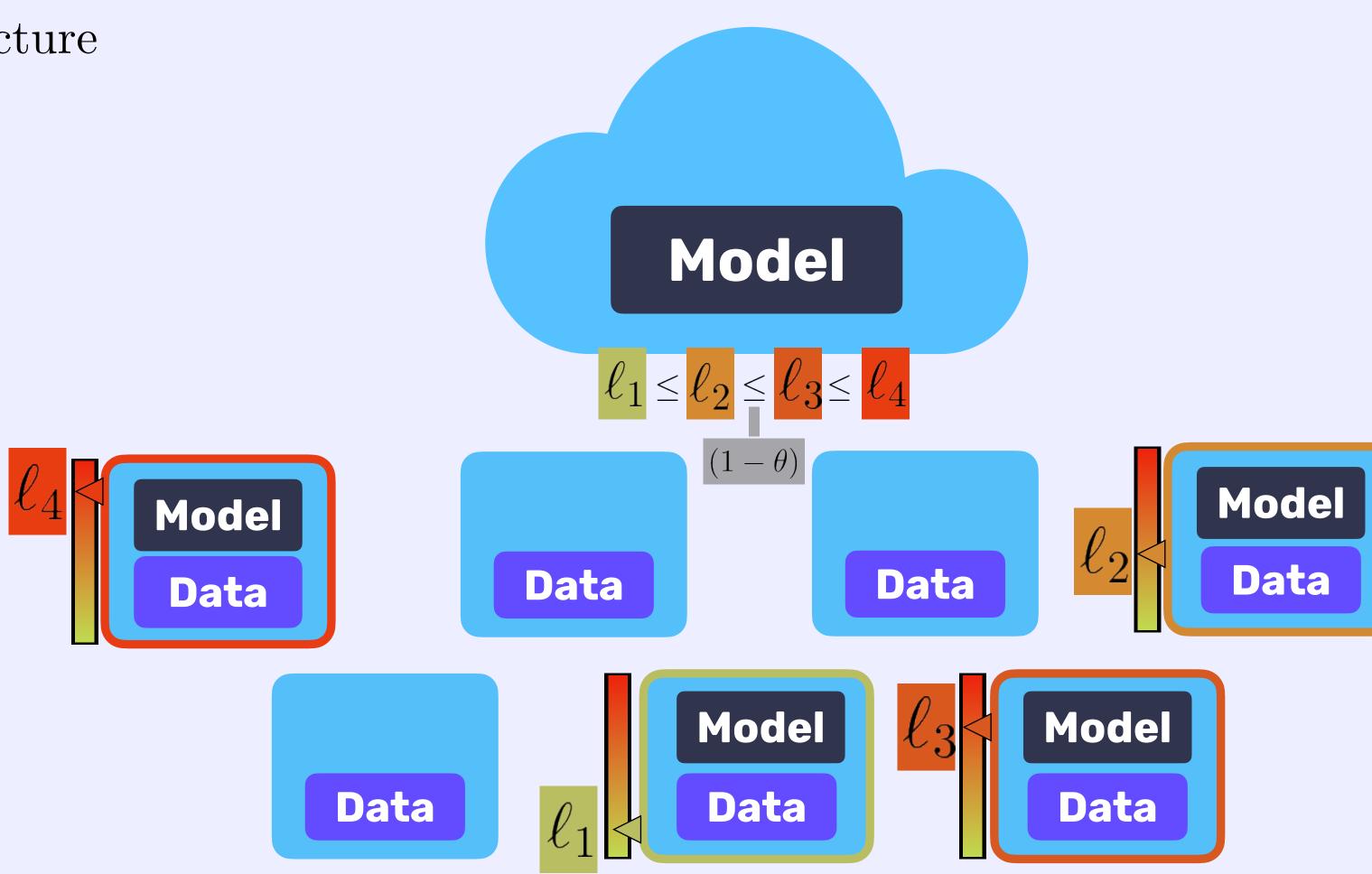
• The practical algorithm on a picture

The server broadcasts the model to a fleet of selected devices

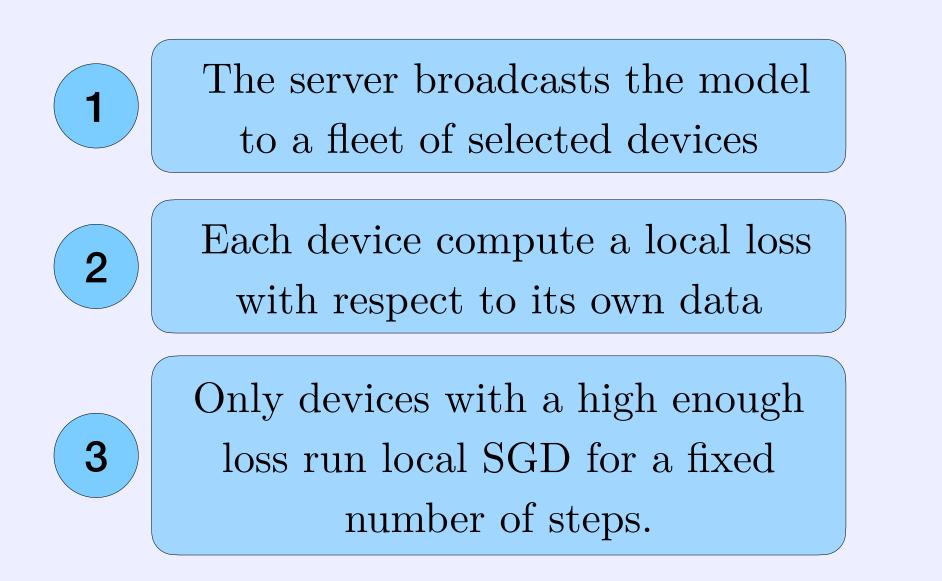
2

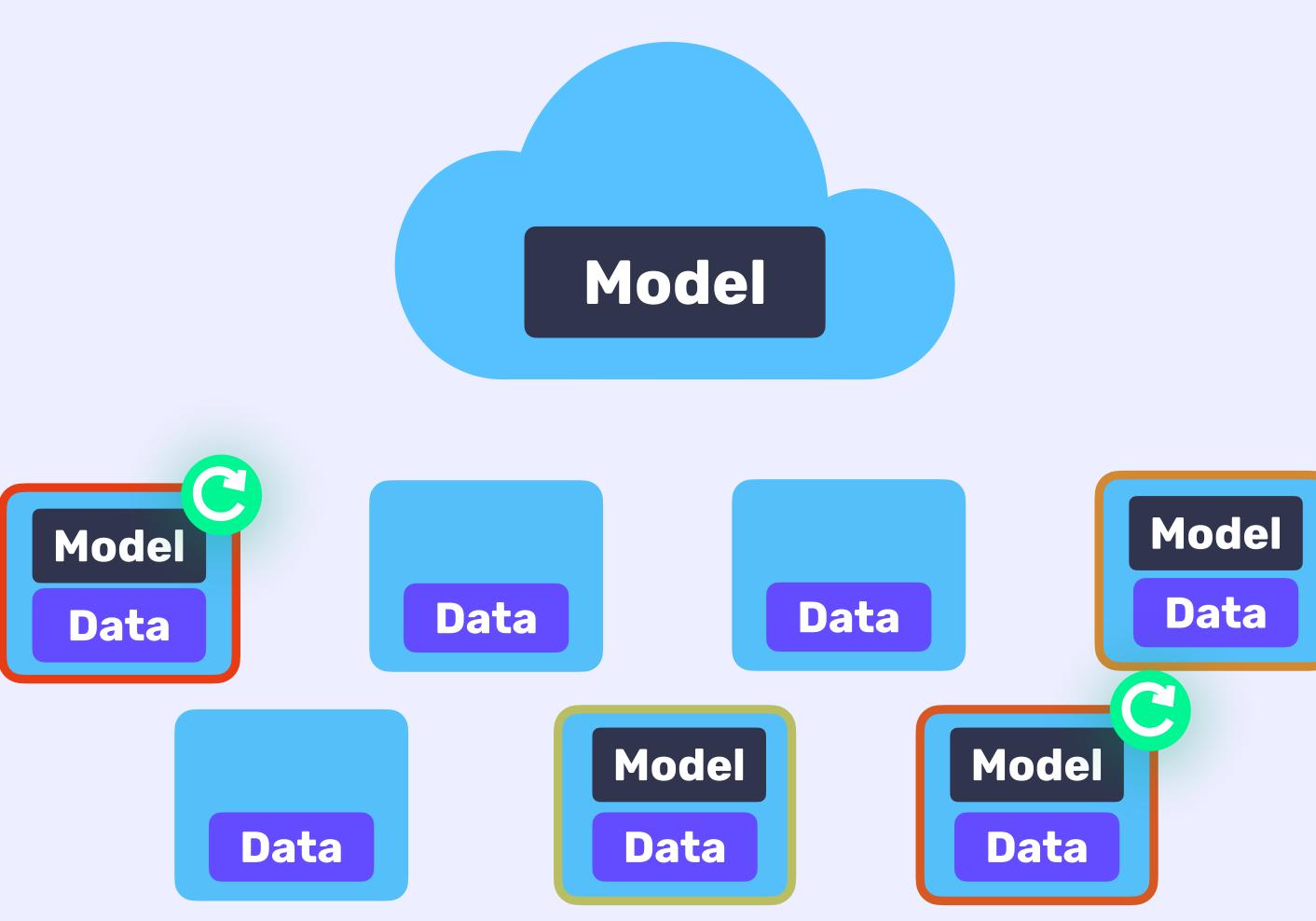
1

Each device compute a local loss with respect to its own data

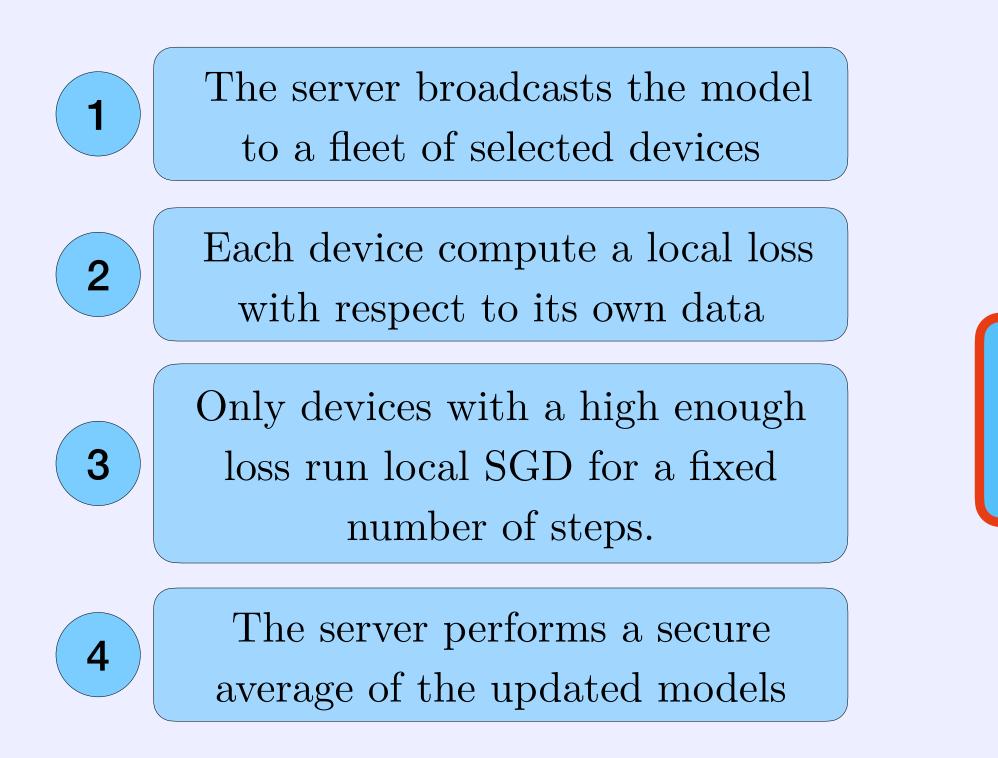


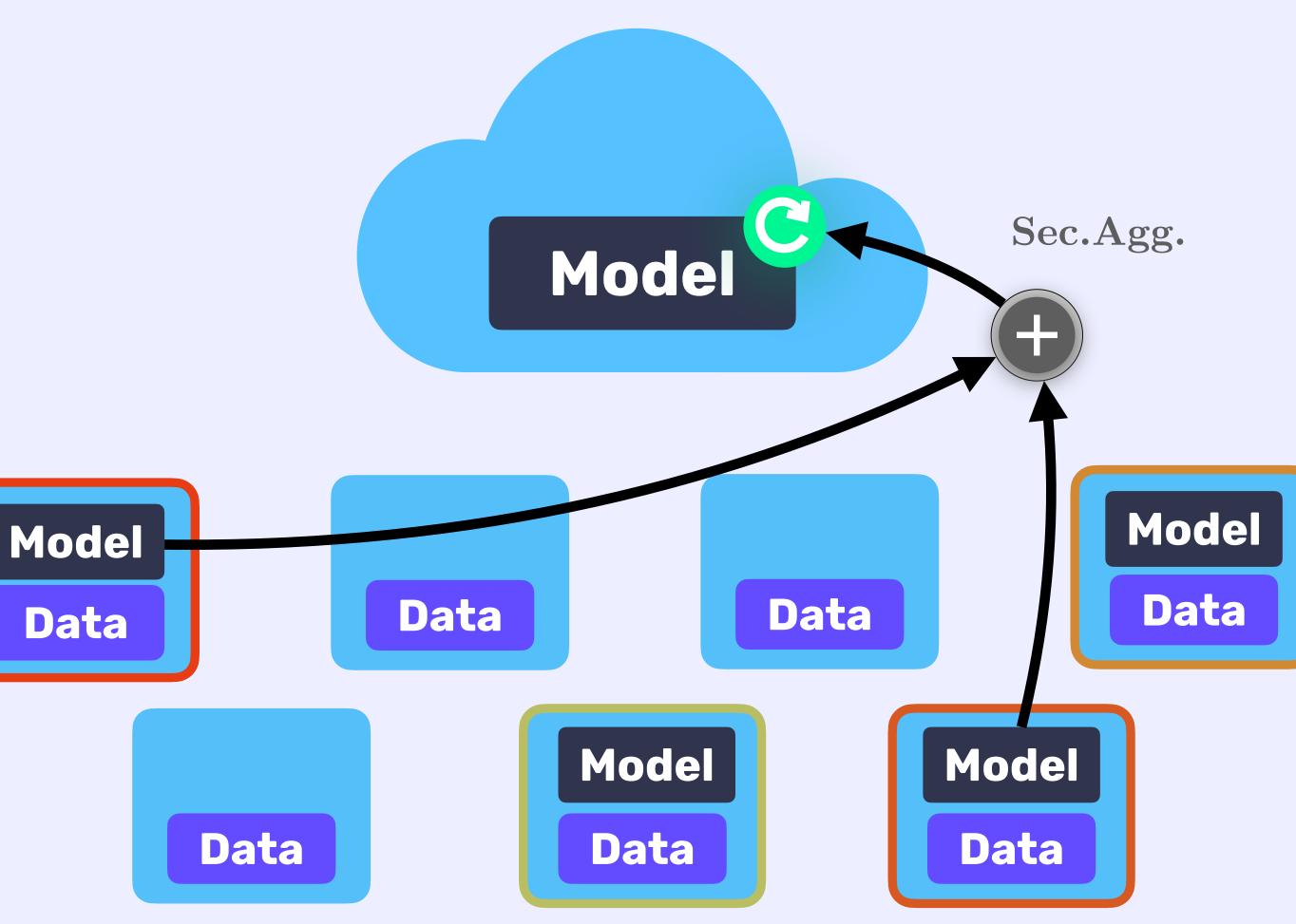
The practical algorithm on a picture





The practical algorithm on a picture





Data

What conformity level should we use ?

In theory, fixing θ is not easy.

Deciding what level of conformity to apply is a question of policy.

What conformity level should we use?

In theory, fixing θ is not easy.

- Deciding what level of conformity to apply is a question of policy.
- However, for conforming users, keeping the risk-averse model might harm a lot there local loss

What conformity level should we use?

In theory, fixing θ is not easy.

- Deciding what level of conformity to apply is a question of policy.
- However, for conforming users, keeping the risk-averse model might harm a lot their local loss
- \blacksquare A possible fix by *mean-CVaR* optimization

$$\min_{w \in \mathbb{R}^d} \lambda \left(\sum_{i=1}^N \alpha_i \ F_i(w) \right) + (1-\lambda) \max_{\pi \in \mathcal{P}_\theta} \sum_{i=1}^N \pi_i \ F_i(w)$$

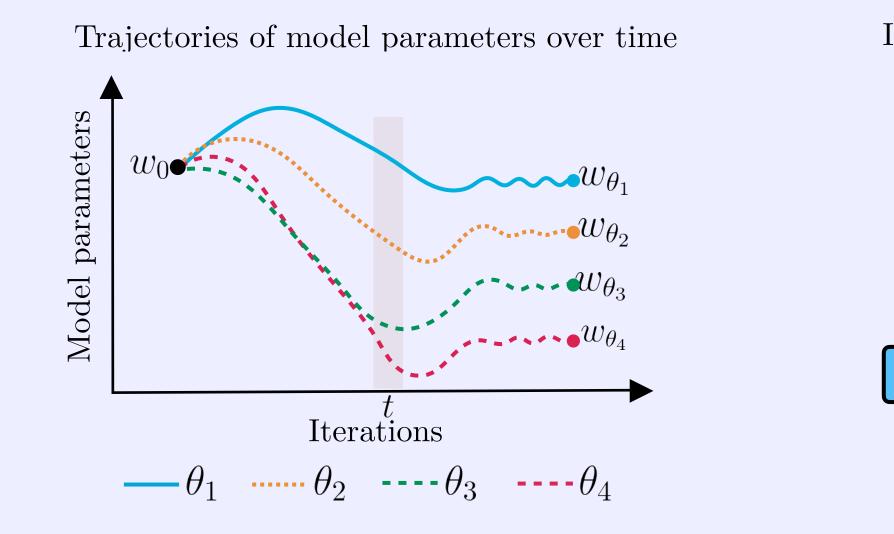
What conformity level should we use?

In theory, fixing θ is not easy.

- Deciding what level of conformity to apply is a question of policy.
- However, for conforming users, keeping the risk-averse model might harm a lot there local loss
- A possible fix by mean-CVaR optimization

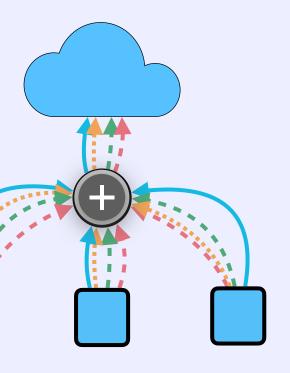
$$\min_{w \in \mathbb{R}^d} \lambda \left(\sum_{i=1}^N \alpha_i \ F_i(w) \right) + (1-\lambda) \max_{\pi \in \mathcal{P}_\theta} \sum_{i=1}^N \pi_i \ F_i(w)$$

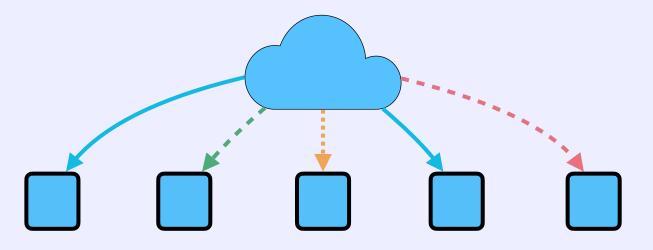
In practice, we propose to keep track of different levels of conformity within each device.



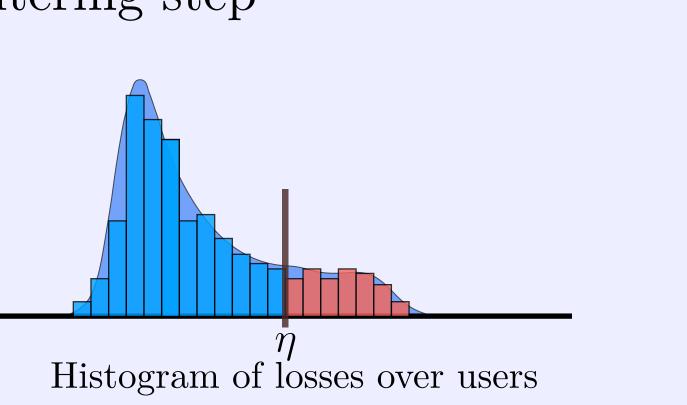
In iteration t of training

Test devices select their level of conformity θ

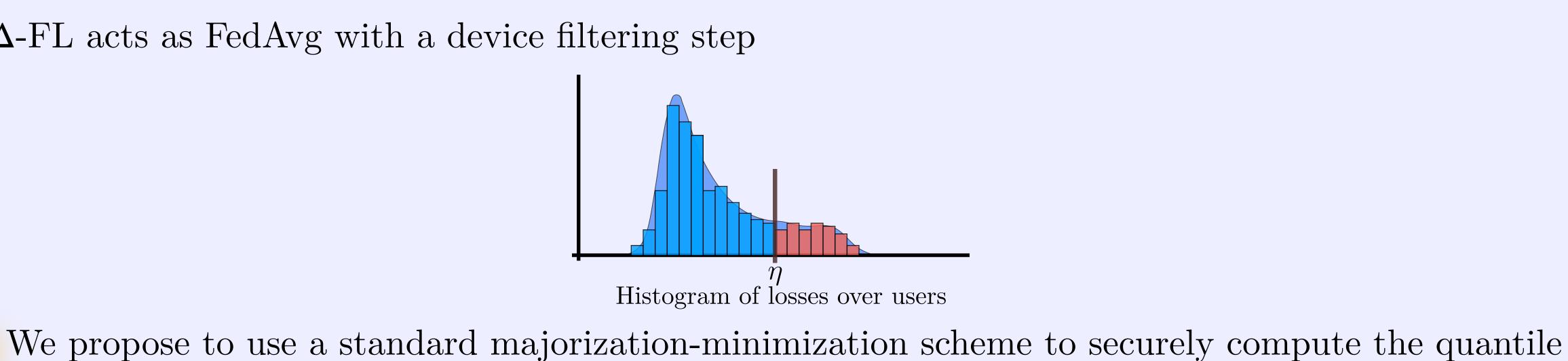




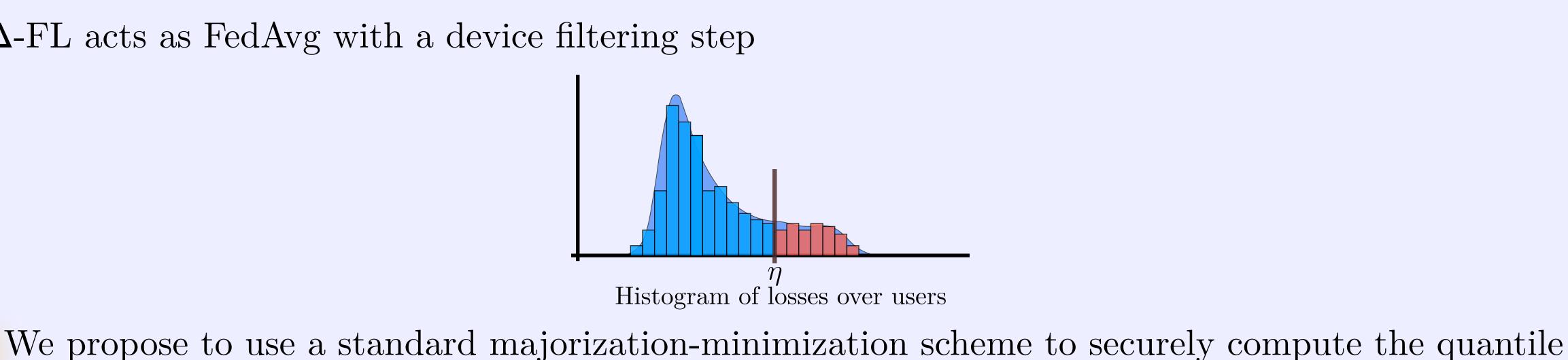
\Box Δ -FL acts as FedAvg with a device filtering step



 \Box Δ -FL acts as FedAvg with a device filtering step

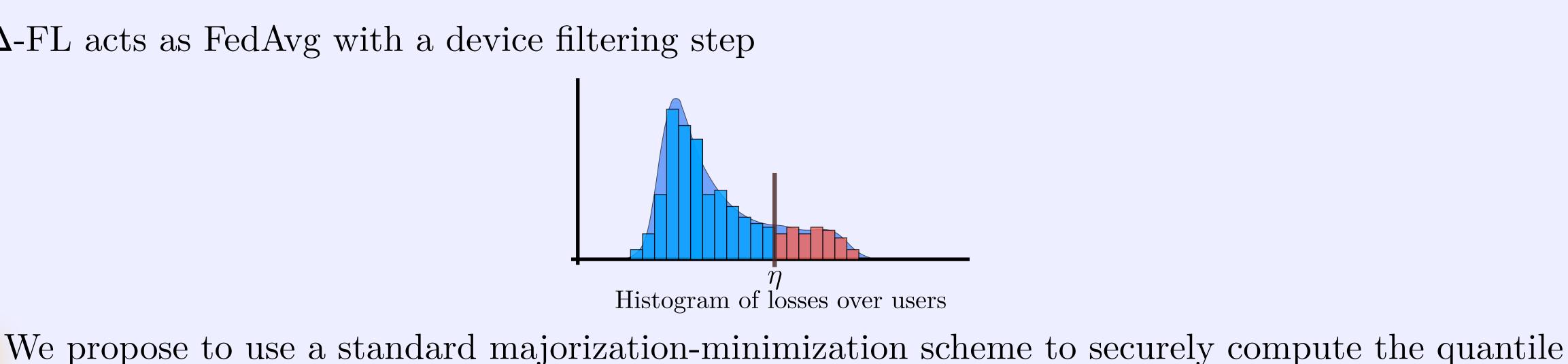


 \Box Δ -FL acts as FedAvg with a device filtering step



• Let us take the conformity level $\theta = 0.5$

 \Box Δ -FL acts as FedAvg with a device filtering step



• Let us take the conformity level $\theta = 0.5$ Iteratively reweighed least squares procedure $\eta^{(t+1)} = \operatorname{argm}$ $\eta \in$

$$\inf_{\mathbb{R}} \sum_{i=1}^{N} \alpha_i \frac{(F_i(w) - \eta)^2}{|F_i(w) - \eta^{(t)}|}$$

 \Box Δ -FL acts as FedAvg with a device filtering step

We propose to use a standard majorization-minimization scheme to securely compute the quantile

• Let us take the conformity level $\theta = 0.5$

Iteratively reweighed least squares procedure

 $\eta^{(t+1)} = \operatorname{argm}^{t}$ $\eta \in$

Solving each iteration boils down to the computation of a weighted averages of the local losses F_i

$$\inf_{\mathbb{R}} \sum_{i=1}^{N} \alpha_i \frac{(F_i(w) - \eta)^2}{|F_i(w) - \eta^{(t)}|}$$

 \Box Δ -FL acts as FedAvg with a device filtering step

We propose to use a standard majorization-minimization scheme to securely compute the quantile

• Let us take the conformity level $\theta = 0.5$

Iteratively reweighed least squares procedure

 $\eta^{(t+1)} = \operatorname{argm}^{t}$ $\eta \in$

Solving each iteration boils down to the computation of a weighted averages of the local losses F_i

For any $\theta \in (0, 1]$, we can still recover the $(1 - \theta)$ -quantile by minimizing iteratively a quadratic function

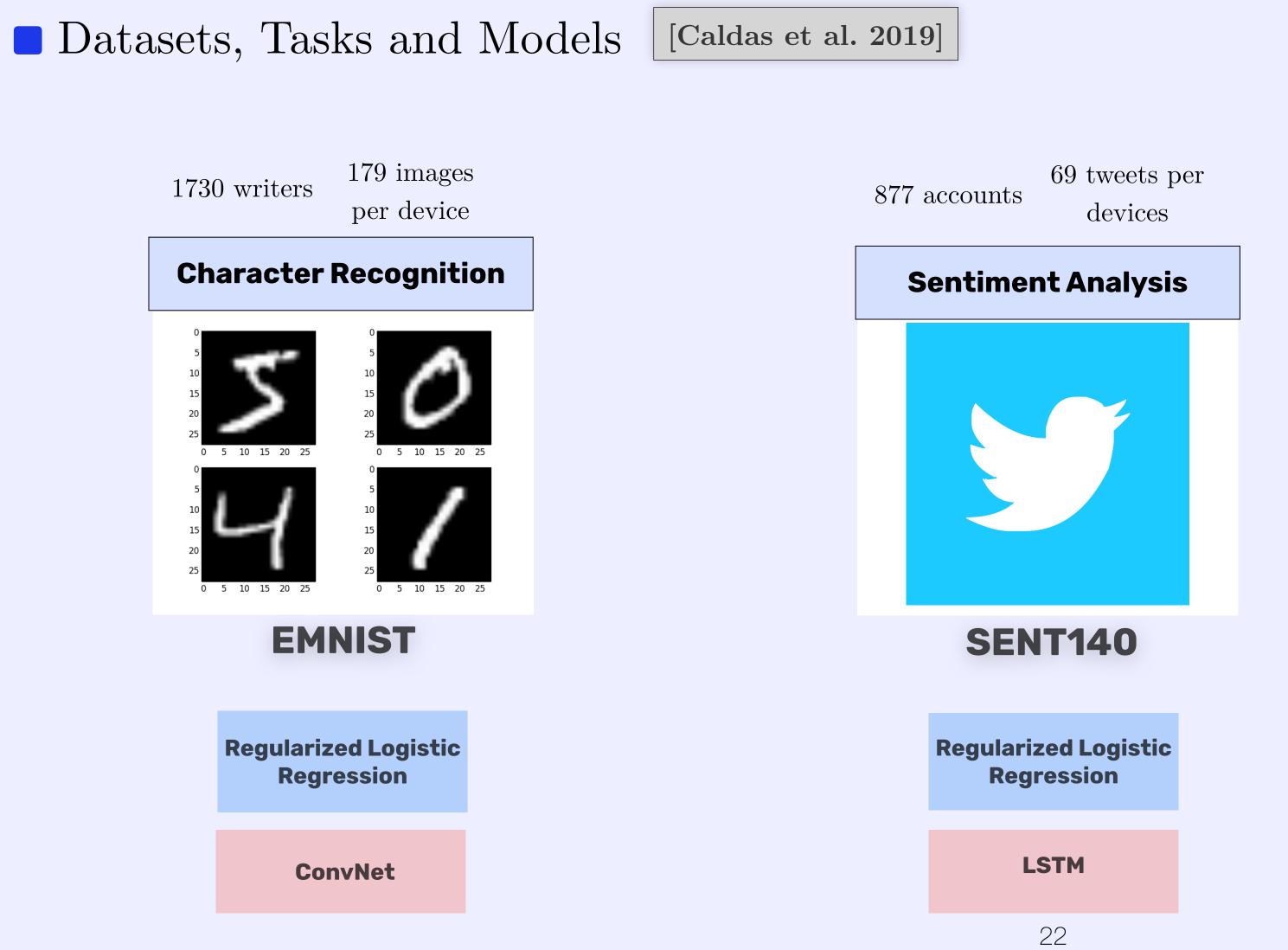
$$\inf_{\mathbb{R}} \sum_{i=1}^{N} \alpha_i \frac{(F_i(w) - \eta)^2}{|F_i(w) - \eta^{(t)}|}$$

Numerical Experiments

 Δ -FL in **Practice**

Numerical Experiments and Comparisons

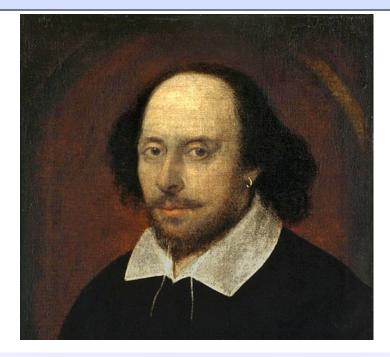
Experimental Setup



1091 roles

1346 tweets per devices

Language Modelling



SHAKESPEARE

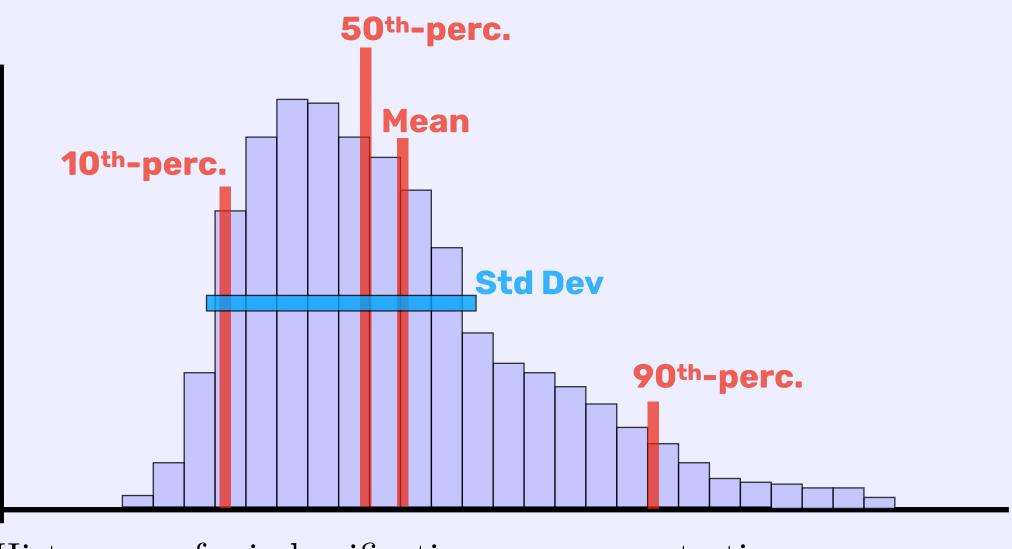
RNN

Metrics gathered

We record the loss of each training device and the misclassification error of each testing device.

Evaluation Metrics

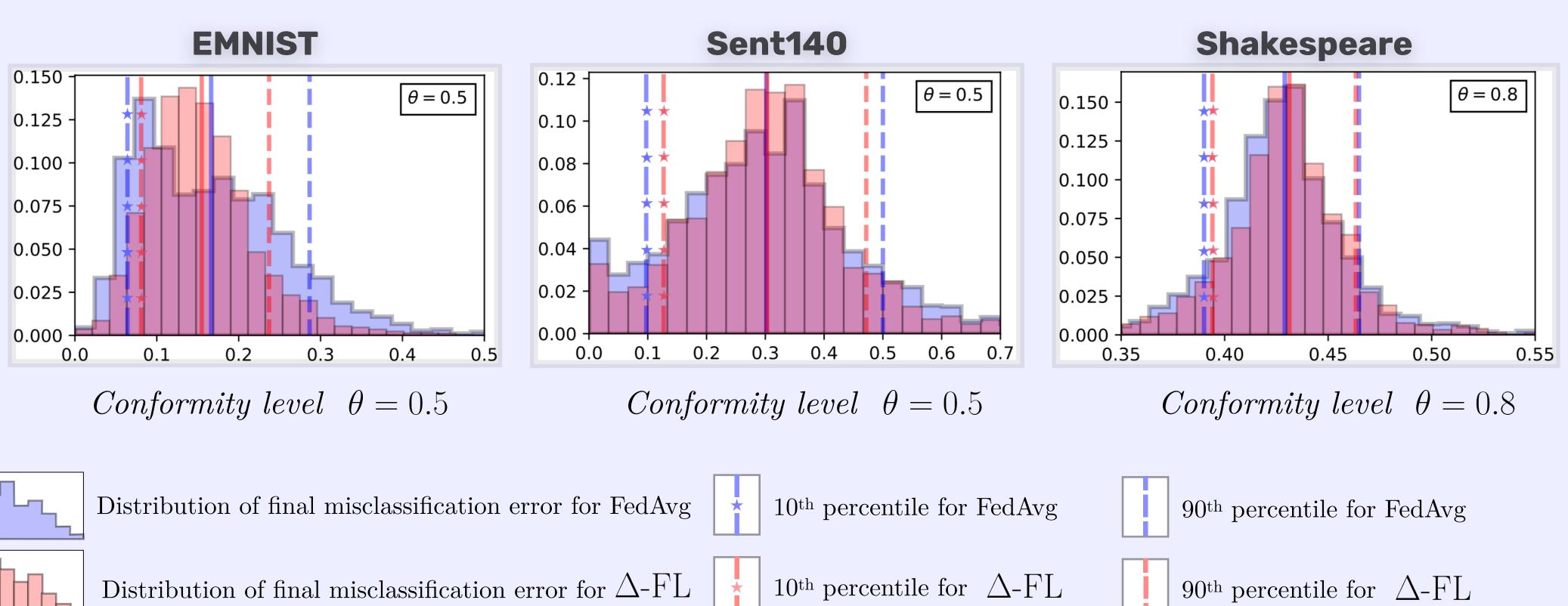
Given the distribution of train losses and test misclassification errors, we evaluate several statistical summaries of theses distributions

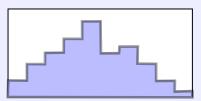


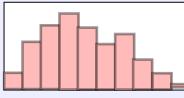
Histogram of misclassification errors over testing users

Experimental Results - Final Performances

Distribution of final misclassification error



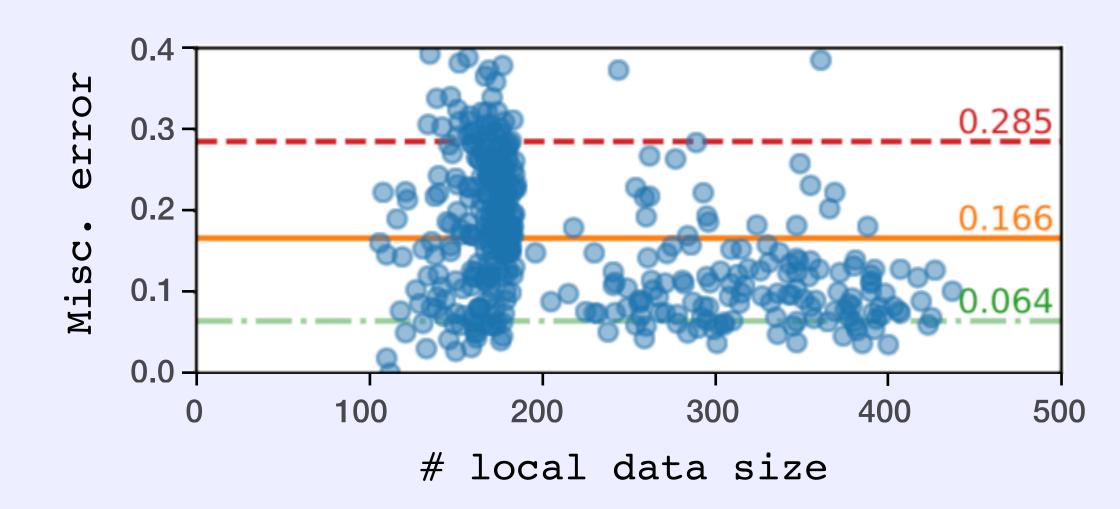




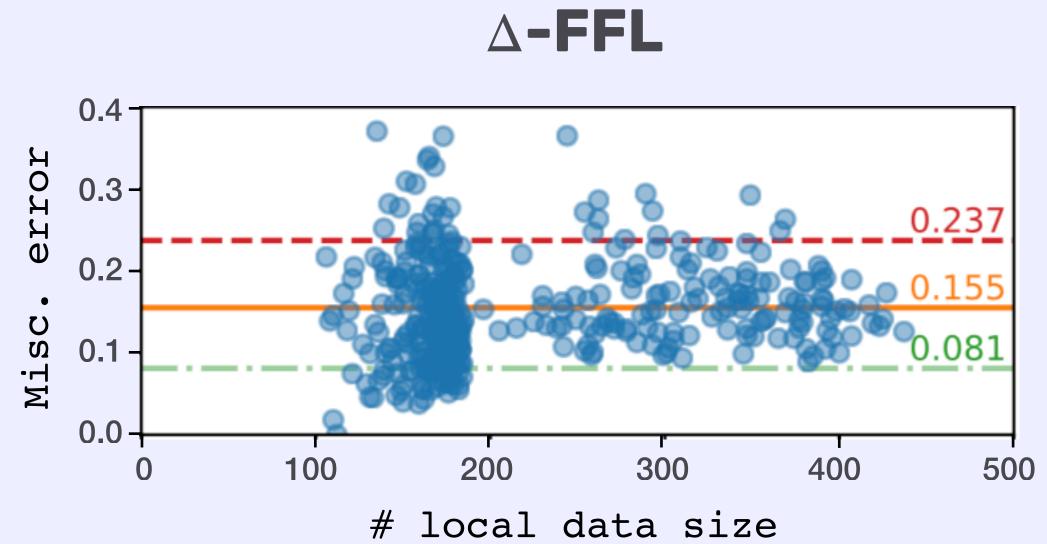
Distribution of final misclassification error for $\Delta\text{-}\mathrm{FL}$

Experimental Results - Local Performance vs Data-Size

Scatter plot of local final performance VS local data-size

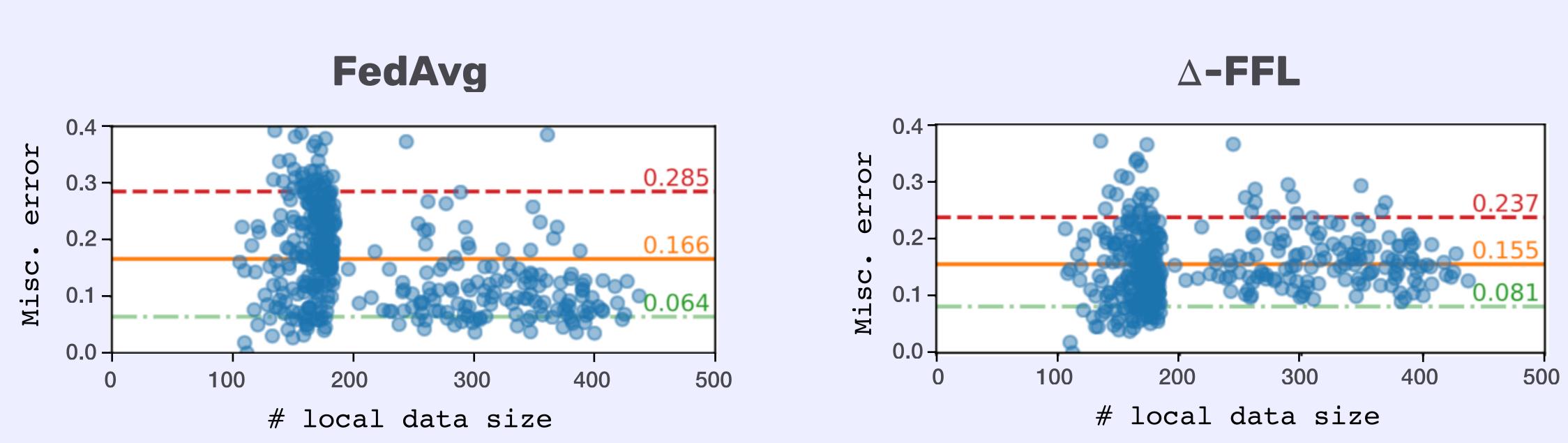


FedAvg



Experimental Results - Local Performance vs Data-Size

Scatter plot of local final performance VS local data-size



 $\alpha_i =$

Number of local data points Total Number of data points

Comparison with recent FL Methods

• We compare the performances of Δ -FL t: FedAvg for different numbers of devices selected per round min $w{\in}\mathbb{R}^d$ FedProx with a tuned proximal parameter $\min_{w_i \in \mathbb{R}^d} F_i(w_i)$ q-FFL for different values of q $\min_{w \in \mathbb{R}^d} \frac{1}{qN} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{qN} \sum_{i=1}^{n} \frac$ AFL as an asymptotic version of q-FFL $\min_{w \in \mathbb{R}^d} \max_{1 \le i \le N} F_i(w)$

 \Box We test the performances of Δ -FL for three conformity levels

$$\sum_{i=1}^{N} \alpha_i \ F_i(w)$$

$$(w_i) + \frac{\mu}{2} \|w_i - w^{(t)}\|^2$$

$$\sum_{i=1}^{N} F_i(w)^q \quad (q \ge 1)$$

Implemented as q-FFL with a large q

Experimental Results - Final Performances

■ 90th percentile Misclassification Error

90^{th} percentile of misclassification error (in %) on test devices.							
	EMNIST		Sent140		Shakespeare		
	Linear	ConvNet	Linear	RNN	RNN		
FedAvg	49.66 ± 0.67	28.46 ± 1.07	46.83 ± 0.54	49.67 ± 3.95	46.45 ± 0.11		
FedProx	49.15 ± 0.74	27.01 ± 1.86	46.83 ± 0.54	49.86 ± 4.07	46.47 ± 0.24		
q-FFL	49.90 ± 0.58	28.02 ± 0.80	46.39 ± 0.40	48.66 ± 4.68	46.36 ± 0.19		
AFL	51.62 ± 0.28	45.08 ± 1.00	47.52 ± 0.32	57.78 ± 1.19	75.06 ± 1.03		
Δ -FL $\theta = 0.8$	49.10 ± 0.24	26.23 ± 1.15	46.44 ± 0.38	46.46 ± 4.39	46.33 ± 0.10		
Δ -FL $\theta = 0.5$	46.48 ± 0.38	23.69 ± 0.94	46.64 ± 0.41	50.48 ± 8.24	46.32 ± 0.13		
Δ -FL $\theta = 0.1$	50.34 ± 0.95	25.46 ± 2.77	51.39 ± 1.07	86.45 ± 10.95	47.17 ± 0.14		

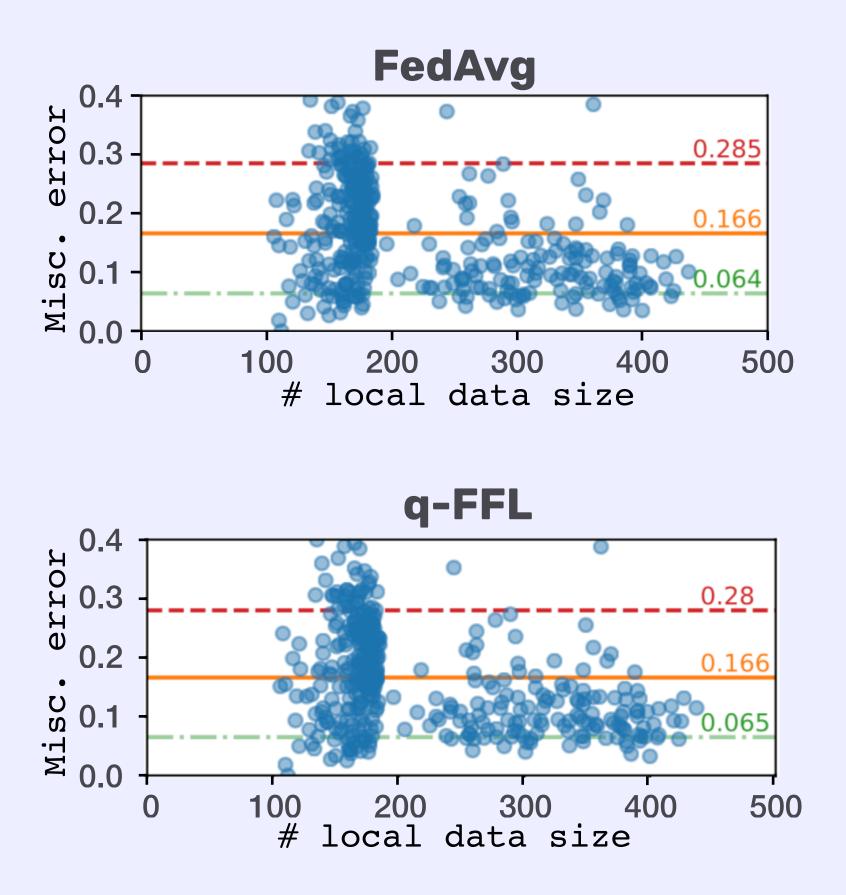
Experimental Results - Final Performances

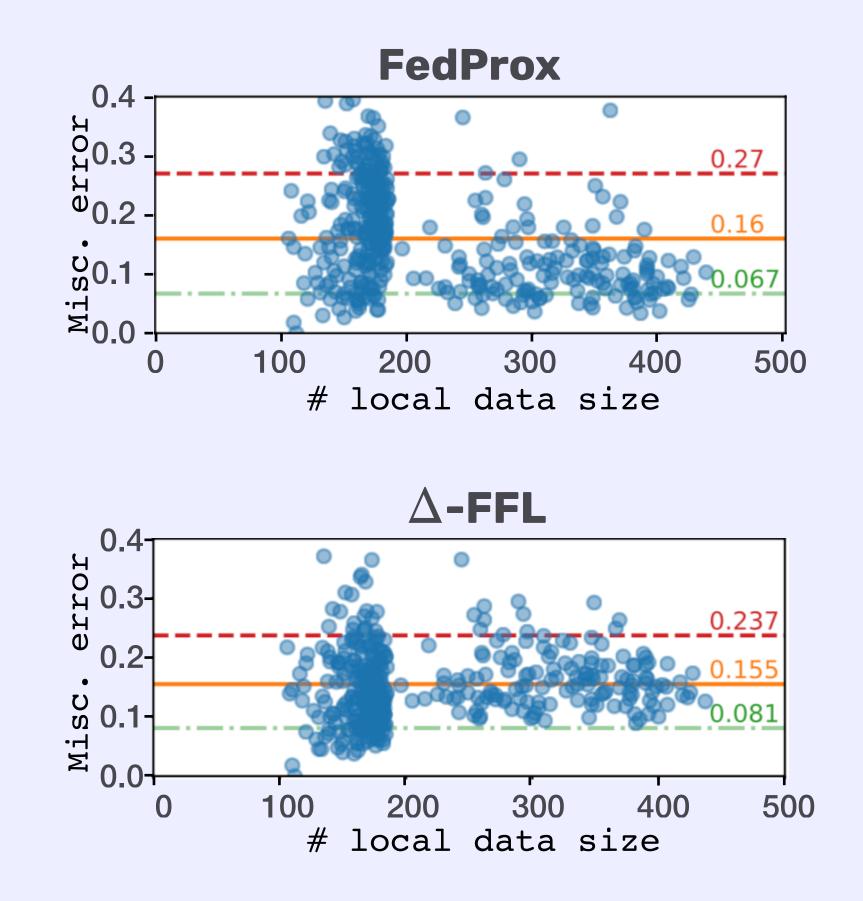
• Average Misclassification Error

Average of misclassification error (in $\%$) on test devices.							
	EMNIST		Sent140		Shakespeare		
	Linear	ConvNet	Linear	RNN	RNN		
FedAvg	34.38 ± 0.38	16.64 ± 0.50	34.75 ± 0.31	30.16 ± 0.44	42.90 ± 0.04		
FedProx	33.82 ± 0.30	16.02 ± 0.54	34.74 ± 0.31	30.20 ± 0.48	43.05 ± 0.11		
q-FFL	34.34 ± 0.33	16.59 ± 0.30	34.48 ± 0.06	29.96 ± 0.56	42.91 ± 0.09		
AFL	39.33 ± 0.27	33.01 ± 0.37	35.98 ± 0.08	37.74 ± 0.65	73.28 ± 1.13		
Δ -FL $\theta = 0.8$	34.49 ± 0.26	16.09 ± 0.40	34.41 ± 0.22	30.31 ± 0.33	42.93 ± 0.05		
Δ -FL $\theta = 0.5$	35.02 ± 0.20	15.49 ± 0.30	35.29 ± 0.25	33.59 ± 2.44	43.13 ± 0.05		
Δ -FL $\theta = 0.1$	38.33 ± 0.38	16.37 ± 1.03	37.79 ± 0.89	51.98 ± 11.81	44.18 ± 0.12		

Experimental Results - Local Performance vs Data-Size

Scatter plot of local final performance VS local data-size





Conclusion

Practice

Rumerical Experiments and Comparisons

Conclusion and Perspectives

- A new framework for statistical heterogeneous settings in Federated Learning, better suited for non-conforming users.
- We analysed the associated optimization algorithm and established bounds on the communication rounds it requires.
- We present numerical evidence in support of this framework.
- Extension of the analysis to the non-convex setting.

Email me at yassine.laguel@univ-grenoble-alpes.fr

