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For any random variable the superquantile of U is  

We propose to solve for a conformity parameter                :
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In our case, we can rewrite -FL’s objective as a joint minimization problem:Δ

[Rockafellar 2000’]

10



Toy Problem 1

A centralized problem: least squares regression

140

120

110

80

60

40

20

0

0 10 20 30 40 50 60 70 80

11



Toy Problem 1

A centralized problem: least squares regression

140

120

110

80

60

40

20

0

0 10 20 30 40 50 60 70 80

11



Conformity Conformity Conformity
140

120

110

80

60

40

20

0

140

120

110

80

60

40

20

0

140

120

110

80

60

40

20

0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Toy Problem 1

A centralized problem: least squares regression

11



Conformity Conformity Conformity
140

120

110

80

60

40

20

0

140

120

110

80

60

40

20

0

140

120

110

80

60

40

20

0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Toy Problem 1

A centralized problem: least squares regression

11



15

Toy Problem 2

12

10

5

0

-5

-15 -10 -5 0 5 10 80 100 120 140 150
0.00

0.02

0.04

0.06

0.08

0.1YES

NO

Is ?3 gaussian distributions
Distributions of losses for 

mixtures of the three gaussian

A distributed problem: mean estimation



3
-FL in PracticeΔ2

1The -FL 
Framework

Δ Numerical Experiments  
and Comparisons2 -FL in  

Practice
Δ



14

Minimizing the worst-case losses

Our framework focuses on the worst-cases losses

Histogram of losses over training users



Minimizing the worst-case losses

Our framework focuses on the worst-cases losses

-FLΔ

Histogram of losses over training users

14



An Alternating Minimization Scheme

We propose to alternatively minimise:

ALTERNATING MINIMIZATION FOR -FLΔ

Input
Starting point 
Inexactness sequence 
Time horizon 

for                                          do

such that 

return

15



An Alternating Minimization Scheme

ALTERNATING MINIMIZATION FOR -FLΔ

Input
Starting point 
Inexactness sequence 
Time horizon 

for                                          do

such that 

return

(quantile computation)

We propose to alternatively minimise:

15



An Alternating Minimization Scheme

ALTERNATING MINIMIZATION FOR -FLΔ

Input
Starting point 
Inexactness sequence 
Time horizon 

for                                          do

such that 

return

(quantile computation)

(Mini-batch SGD)
(Local SGD)

We propose to alternatively minimise:
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Tackling Non-smoothness

0

Assuming the     to be smooth, we consider the following smoothed regularised problem

A non-smooth optimization problem

Non-smooth term

Smoothing the max term.
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Convergence Result

Under above assumptions, when running local SGD with respect to    with   local steps, we bound the 
total number of    communication rounds to achieve    accuracy with:

Theorem
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Assumptions for Local SGD

Convergence Rate Result

The local losses     are convex B-Lipschitz and L-smooth

We dispose of an unbiased stochastic first-order oracle for the composition                                   with 
bounded variance     for the gradient with respect to w. Let

A last technical assumption [Koloskova et al. 2020]
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What conformity level should we use ?

Deciding what level of conformity to apply is a question of policy.

In practice, we propose to keep track of different levels of conformity within each device.

In theory, fixing   is not easy. 

However, for conforming users, keeping the risk-averse model might harm a lot there local loss

A possible fix by mean-CVaR optimization
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Privacy Preservation for the Device Filtering Step

-FL acts as FedAvg with a device filtering stepΔ

Histogram of losses over users

We propose to use a standard majorization-minimization scheme to securely compute the quantile

Let us take the conformity level 

Iteratively reweighed least squares procedure

For any             , we can still recover the          -quantile by minimizing iteratively a quadratic function

Solving each iteration boils down to the computation of a weighted averages of the local losses
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Experimental Setup

Datasets, Tasks and Models

EMNIST

Character Recognition

SHAKESPEARESENT140

ConvNet LSTM RNN

Regularized Logistic 
Regression

Regularized Logistic 
Regression

Sentiment Analysis Language Modelling

1730 writers 179 images 
per device

[Caldas et al. 2019]

877 accounts
69 tweets per 

devices
1091 roles 1346 tweets 

per devices



Evaluation Metrics

Metrics gathered

We record the loss of each training device and the misclassification error of each testing device.

Evaluation Metrics

Given the distribution of train losses and test misclassification errors, we evaluate several statistical 
summaries of theses distributions

Mean

50th-perc.

90th-perc.

10th-perc.

Std Dev
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Histogram of misclassification errors over testing users



EMNIST

Distribution of final misclassification error

Experimental Results - Final Performances

Sent140 Shakespeare

Conformity level Conformity level Conformity level 

Distribution of final misclassification error for FedAvg

Distribution of final misclassification error for

10th percentile for FedAvg

10th percentile for

90th percentile for FedAvg

90th percentile for
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Experimental Results - Local Performance vs Data-Size
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Comparison with recent FL Methods

We compare the performances of -FL t:Δ
FedAvg for different numbers of devices selected per round

FedProx with a tuned proximal parameter

q-FFL for different values of q

AFL as an asymptotic version of q-FFL

We test the performances of -FL for three conformity levelsΔ

Implemented as q-FFL with a large q
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Experimental Results - Final Performances

90th percentile Misclassification Error
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Experimental Results - Final Performances

Average Misclassification Error
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Conclusion and Perspectives
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A new framework for statistical heterogeneous settings in 
Federated Learning, better suited for non-conforming users.

We analysed the associated optimization algorithm and 
established bounds on the communication rounds it requires.

We present numerical evidence in support of this framework.

Extension of the analysis to the non-convex setting.

Email me at yassine.laguel@univ-grenoble-alpes.fr


