
2020 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2020, ESPOO, FINLAND

FIRST-ORDER OPTIMIZATION FOR SUPERQUANTILE-BASED SUPERVISED LEARNING

Yassine Laguel? Jérôme Malick∗ Zaid Harchaoui†

?UGA, Lab. J. Kuntzmann, Grenoble, France
∗CNRS, Lab. J. Kunztmann, Grenoble, France
† University of Washington, Seattle, USA

ABSTRACT

Classical supervised learning via empirical risk (or negative
log-likelihood) minimization hinges upon the assumption that
the testing distribution coincides with the training distribu-
tion. This assumption can be challenged in modern appli-
cations of machine learning in which learning machines may
operate at prediction time with testing data whose distribution
departs from the one of the training data. We revisit the su-
perquantile regression method by proposing a first-order opti-
mization algorithm to minimize a superquantile-based learn-
ing objective. The proposed algorithm is based on smoothing
the superquantile function by infimal convolution. Promis-
ing numerical results illustrate the interest of the approach
towards safer supervised learning.

Index Terms— supervised learning; risk measure; distri-
butional robustness; nonsmooth optimization

1. INTRODUCTION

Classical supervised learning assumes that, at training time,
we have access to examples (x1, y1), . . . , (xn, yn) drawn
i.i.d. from a distribution P, and that at testing time, we may
face a new example, also drawn from P. The learned pre-
dictor or function can be used by humans or machines to
make decisions, or used in as an intermediate component in a
greater data processing and computing system.

This common framework is currently challenged by im-
portant domain applications [1], in which several of the stan-
dard assumptions turn out to be unrealistic or simply incor-
rect. We may not face the same distribution at test time as
we did at training time (train-test distribution shift). Recent
failures of learning systems when operating in unknown en-
vironments [2, 3] underscore the importance of reconsidering
the learning objective used to train learning machines in order
to ensure robust behavior in the face of unexpected distribu-
tions at prediction time.

The generalized regression framework presented in [4]
provides an attractive ground to design learning machines dis-

The authors gratefully acknowledge support from NSF CCF 1740551,
DMS 1839371, and faculty research awards.

playing increased robustness in the face of unexpected test-
ing distributions. The framework hinges upon the notion of
superquantile, a statistical summary of a distribution tail [5,
6, 7]. This notion of robustness is aligned with the one in
distributionally robust optimization [8] and empirical likeli-
hood estimation [9]. It is, however, different, from notions of
robustness commonly considered in robust statistics [8, Sec.
12.6].

The superquantile is a risk measure, a family of statistical
summaries of distribution tails, well studied in economics
and finance [10, 11]. The quantity is, however, a nons-
mooth function. We present here a simple approach, based
on infimal convolution smoothing, which allows one to eas-
ily adapt state-of-the-art gradient-based optimization algo-
rithms for classical supervised learning to the superquantile-
based learning framework. Moreover, we provide a com-
panion software package in Python available here https:
//github.com/yassine-laguel/spqr .

1.1. Superquantile

Risk measures play a crucial role in optimization under un-
certainty, involving problems with an aversion to worst-cases
scenarios. Among popular convex risk measures, superquan-
tile (also called Conditional Value at Risk) has received a
special attention because of its nice convexity properties; see
e.g. the textbook [12, Chap. 6].

We use here the notation and terminology of Rockafellar
and Royset [13]. The p-quantile Qp(U) of a random variable
U is defined as the general inverse of the cumulative distribu-
tion of U . More precisely, for a random variable U (admitting
a second order moment), the cumulative distribution function
FU : R → [0, 1] is defined as FU (x) = P(U ≤ x). For
any p ∈ [0, 1], the p-quantile Qp(U) and the p-superquantile
Q̄p(U), are respectively defined by

Qp(U) = min{x ∈ R, FU (x) ≥ p}

Q̄p(U) =
1

1− p

∫ 1

p′=p

Qp′(U)dp′.
(1)

The superquantile is, therefore, a measure of the upper tail.
The parameter p allows one to control the sensitivity to risk.

978-1-7281-6662-9/20/$31.00 c©2020 IEEE

The superquantile enjoys a dual representation [14]

Q̄p(U) = max
0≤q(·)≤ 1

1−p∫
Ω
q d P(ν)=1

∫
ν∈Ω

U(ν)q(ν)dP(ν) (2)

Interestingly, the dual formulation uncovers another interpre-
tation of the superquantile learning objective relating it to the
re-weighting of the terms in the empirical risk. In practice, the
ambiguity on the data distribution may be formalized before
training, for instance by incorporating side information (geo-
graphical and/or temporal for instance) that drives the hetero-
geneity of the data. Superquantile learning is expected to pro-
duce models that perform better in case of distributional shifts
between the training time and the testing time, compared to
models trained using standard empirical risk minimization.

1.2. Superquantile-based learning

We are interested in a supervised machine learning setting
with training data D = (xi, yi)1≤i≤n ∈ (Rp×Rq)n, a pre-
diction function ϕ : Rd×Rp → Rq (such as a linear model
or a neural network) and a loss function ` : Rq×Rq → R
(such as the logistic loss or the least-squares loss). The clas-
sical empirical risk minimization writes

min
w∈Rd

E(xi,yi)∼D (`(yi, ϕ(w, xi)) . (3)

A natural approach consists then in replacing the expec-
tation in (3) by the superquantile (1) in the case of discrete
distributions standing for the training data

min
w∈Rd

[Q̄p](xi,yi)∼D
(
`(yi, ϕ(w, xi)

)
(4)

Introducing Li(w) = `(yi, ϕ(w, xi)) and L(w) = (Li(w))i,
we simply write the superquantile optimization problem as

min
w∈Rd

f(w) = Q̄p(L(w)). (5)

Note that the objective function can specified by express-
ing the superquantile in its dual formulation (2) for the dis-
crete distribution

f(w) = sup
q∈Kp

n∑
i=1

qiL
i(w) with

Kp =

{
q ∈ Rn,

n∑
i=1

qi = 1, qi ∈
[
0,

1

n(1− p)

]
∀i

}
.

This representation is central to the implementation as we
shall see in Sec. 3. Existing works on minimizing superquan-
tiles considered linear programming or convex programming
including interior point algorithms; see [15]. Our approach
considers first-order algorithms instead; although natural, this
work seems to be the first one to do so.

2. SMOOTHING THE SUPERQUANTILE

In this section, we study the differentiability properties of the
superquantile objective (5). We first derive the expression of
the subdifferential, when the Li-s are convex1. Then, when
Li are smooth (and possibly nonconvex), we show how to
smooth the superquantile by infimal convolution in order to
apply gradient-based optimization algorithms [16].

2.1. Subdifferential expression

The superquantile risk measure (5) is usually nonsmooth and
computing its subdifferential (or even a single subgradient)
is not straightforward. Using the dual reformulation (2), we
get the expression of the entire subdifferential for the convex
case. Note that gradients of superquantile-based functions
for general distributions are obtained, with advanced tools,
in [17]. Interestingly, the nonsmoothness of these functions
arises only with discrete distributions.

Proposition 2.1. Assume the model ϕ and the loss ` are such
that the Li are convex. For w ∈ Rd, let Ip(w) be the set of
indices i ∈ {1, . . . , n} such that Li(w) = Qp(L(w)). Then
the subdifferential reads as a Minkowski sum

∂f(w) =
1

1− p
∑

i∈{1,...n}
Li(w)>Qp(L(w))

∂Li(w)

n

+

{
1

1− p
∑

i∈Ip(w)

αi
∂Li(w)

n
, αi ∈ [0, 1]∀i ∈ Ip(w)

1

n

∑
i∈Ip(w)

αi =
1

n

n∑
i=1

1Li(w)≤Qp(L(w)) − p
}

In particular, when L is differentiable at w, f is differentiable
at w if and only if the set Ip(w) is reduced to a singleton.

Proof. The proof consists in applying various convex calcu-
lus rules, taken from the textbook [18, Chap D]. First we ap-
ply Theorems 4.1.1 and 4.4.2 to hi(w, η) = max(Li(w)−η)

∂hi(x, η) = {(∂Li(w),−1)(1Li(w)>η+α1Li(w)=η), α ∈ [0, 1]}

We apply Theorem 4.1.1 with h(w, η) = η+ 1
n(1−p)

∑n
i=1 hi(w, η)

∂h(w, η) =

{(
1

1− p

n∑
i=1

∂Li(w)

n
(1L(w)i>η + αi1Li(w)=η),

1− 1

1− p

n∑
i=1

1

n
(1Li(w)>η + αi1Li(w)=η)

)
,

αi ∈ [0, 1], ∀i ∈ {1, . . . , n}

}
.

1Convexity of the Li-s is guaranteed when e.g. the model ϕ is linear and
the loss ` is convex with respect to its second variable, as for the l2-squared
loss and the the cross-entropy loss.

By [10], f satisfies f(w)=minη∈R h(w, η), withQp(L(w))=
arg minη∈R h(w, η). We can thus apply Corollary 4.5.3 to get

∂f(w) =

{
1

1− p

n∑
i=1

∂Li(w)

n
δi(w,α) with α s.t.

0 = 1− 1

1− p

n∑
i=1

δi(w,α)

n
and αi ∈ [0, 1],∀i

}

with δi(w,α) = (1Li(w)>Qp(L(w)) + αi1Li(w)=Qp(L(w))).
Observe finally that for any sequence (αi)1≤i≤n

0 = 1− 1

1− p

n∑
i=1

δi(w,α)

n

⇔ 1

n

∑
i∈Ip(z)

αi = 1− p−
n∑
i=1

1

n
1Li(w)>Qp(L(w))

⇔ 1

n

∑
i∈Ip(z)

αi = 1− p− (1− P[L(w) ≤ Qp(L(w))])

⇔ 1

n

∑
i∈Ip(z)

αi =
1

n

n∑
i=1

1Li(w)≤Qp(L(w)) − p

which yields the result.

Thus, the computation of a subgradient can be performed
in linear time: the cost essentially stems from the computa-
tion of the quantile Qp(L(w)) and the sum of vectors in Rd
(assuming such sums can be computed in constant time).

2.2. Gradient of smoothed approximation

As shown in Proposition 2.1, the objective function is not dif-
ferentiable in general (even when L is differentiable), and we
propose to smooth it using infimal convolution as in [16].
More precisely, we follow the methodology of [19] and we
propose to smooth only the superquantile Q̄p rather than the
whole function f . Given formulation (2), we introduce

fµ(w) = max
q∈Kp

n∑
i=1

qi L
i(w)− µ d(q) for µ > 0 (6)

where d : Rn → R is a fixed non-negative strongly con-
vex function that satisfies minq∈K d(q) = 0. In this paper,
we consider the euclidean distance to the uniform probability
measure and the entropic penalty function

d(q) =
1

2

∥∥∥∥q − 1

n
e

∥∥∥∥2

and d(q) = log(n)+

n∑
i=1

qi log(qi)

where e = (1, . . . , 1)> is the usual vectors of all ones. As a
direct application of [16, Th. 1], we have the following propo-
sition establishing that fµ is a smooth approximation of f .

Algorithm 1: Fast subroutine for smoothed oracle
Initialization: u = L(w) + µ

n e,
` = 1

n(1−p) , qµ = 0 ∈ Rn

P = {ui, i ∈ {1, . . . , n}} ∪ {ui −
µ`, i ∈ {1, . . . , n}}

1 Find a := max {s ∈ P, θ′(s) ≤ 0}
2 b := min {s ∈ P, θ′(s) > 0};
3 if θ′(a) = 0 then
4 λ := a;
5 else
6 λ := a− θ′(a)(b−a)

θ′(b)−θ′(a)

7 for 1 ≤ k ≤ n do
8 if λ < uk − µ` then
9 [qµ]k = `;

10 else if uk − µ` ≤ λ < uk then
11 [qµ]k = uk−λ

µ ;
12 else
13 [qµ]k = 0
14 end
15 end

Output: qµ ∈ Rn : solution of (6)

Proposition 2.2 (Gradient of smoothed approximation). As-
sume the model ϕ and the loss ` are such that the Li are
smooth for any i. In the above setting, the convex function fµ
provides a global approximation of f , i.e. fµ(w) ≤ f(w) ≤
fµ(w) + µ

2 for any w ∈ Rd. If L is differentiable, then fµ is
differentiable as well, with

∇fµ(w) = JL(w)T qµ(w), (7)

where JL(w) is the Jacobian of L at w and qµ(w) is the opti-
mal solution of (6), unique by strong convexity of d.

To be made practical, the previous result needs to be
equipped with a fast and efficient procedure to solve (6).
As stated in the next proposition, Algorithm 1 addresses
this issue. The procedures follows closely the ones in [20],
where convex duality and one-dimensional search ideas are
fruitfully combined.

Proposition 2.3. Algorithm 1 computes the optimal solution
of the problem (6) (with the euclidean or the entropic penalty)
at a cost of O(n) operations.

Proof. We detail the proof for d(q) = 1
2‖q − 1/n e ‖2; the

second case of the entropy follows the same lines. We dualize
the constraint

∑n
i=1 qi − 1 = 0 to get the Lagrangian:

L(q, λ) =

n∑
i=1

qiL
i(w)−µ

2

n∑
i=1

(
qi −

1

n

)2

+λ

(
1−

n∑
i=1

qi

)
.

With the notation ` and u introduced in the algorithm, the dual
function writes:

θ(λ) = max
q∈Rn

0≤qi≤l

L(q, λ) = λ− µ

2n
+

n∑
i=1

max
0≤qi≤l

(ui−λ)qi−
µ

2
q2
i

For λ ∈ R and i ∈ {1, . . . , n} fixed, let us introduce the
function hi(qi) = (ui − λ)qi − µ

2 q
2
i . Then, we get

arg max
0≤qi≤l

hi(qi) =


0 if λ ≥ ui
ui−λ
µ if ui ≥ λ ≥ ui − µ`

` if λ ≤ ui − µ`
(8)

As a result, we get the explicit expression of θ(λ). Observing
that it is differentiable, we get

θ′(λ) = 1−
n∑
i=1

(
ui − λ
µ

1ui≥λ≥ui−µ` + `1ui−µ`>λ

)
.

Observe now that limλ→+∞ θ′(λ) = 1 and since n` =
1

1−p > 1, limλ→−∞ θ′(λ) < 0. Therefore, θ′ is a non-
decreasing and continuous (piecewise affine) function that
takes negative and positive values: by the intermediate value
theorem, there exists a solution λ? ∈ R such that θ′(λ?) = 0.
By duality theory, the associated q? (the optimal solution
of (8) for λ = λ?) is the solution of the primal problem (6).
Finally, we compute λ? zeroing θ′. Since θ′ is piecewise
affine, we just need to evaluate θ′ at points belonging to the set
P and at a and b as defined in Algorithm 1. One can then find
λ? by testing three simple cases (i) if θ′(a) = 0, take λ∗ = a,
if θ′(b) = 0, take λ∗ = b, else, take λ∗ = a− θ′(a)(b−a)

θ′(b)−θ′(a) .
Regarding computational costs, this algorithm boils down

to the search of a and b, and the assignment of the coordinates
of qµ. This also sums up to a O(n) cost.

Thus Algorithm 1 provides an efficient oracle for mini-
mizing of f with first-order algorithms.

3. A PYTHON TOOLBOX FOR SUPERQUANTILE
OPTIMIZATION

We provide a Python software package called SPQR to
the =community for research in superquantile-based op-
timization and learning. The software package includes
optimization and modeling tools to solve problems of the
form (5) with just a few lines of code. The implementa-
tion builds off basic structures of scikit-learn [21].The
code is publicly available at https://github.com/
yassine-laguel/spqr.

We describe here the optimization methods used in in the
toolbox and how to call the basic functions. We refer to the
online documentation for more details, custom options, and
parameter settings.

3.1. First-order optimization algorithms

Although stochastic gradient algorithms are popular methods
to solve empirical risk minimization problems at scale (3), re-
placing the expectation by the superquantile in (4) completely
changes the situation making these algorithms not directly ap-
plicable. Indeed computing the function values and gradients

requires sorting loss values on the whole data set, which is not
directly amenable to classical stochastic gradient algorithms.
This rehabilitates batch optimization algorithms in our con-
text. We cover a variety of methods

• when L is convex: subgradient method and dual av-
eraging. We implement in particular the “weighted”
version of dual averaging with a Euclidean prox-
function [22]. For an iterate xk and a gradient gk
of f at xk, the update writes:

xk+1 =
−sk+1

αk
with sk+1 =

k∑
i=0

gk
‖gk‖

where (αk)k≥0 denotes the tuned step-size of the
method. The tuning is carried through a line-search
strategy performed at the first iteration. To use these
algorithms, we provide a subgradient oracle (from
Proposition 2.1) with the same complexity as comput-
ing a quantile (ie. O(n) with n the number of data
points).

• when L is smooth, we can use the smoothed objec-
tive: gradient method, accelerated gradient method and
quasi-Newton (BFGS). In particular the accelerated
gradient method relies on the following scheme [23]:

α0 = 0, αs =
1 +

√
1 + 4αs−1)

2
and γs =

1− αs
αs+1

xs+1 = ys −
1

β
∇f(ys), ys+1 = (1− γs)xs+1 + γsxs

with x0 = y0 = 0. To use these algorithms, we provide
a gradient oracle using Algorithm 1, again with aO(n)
complexity (Proposition 2.3).

3.2. Basic usage: input format and execution

The user provides a dataset (X,Y) ∈ Rp×Rm and an oracle
for the function L and its gradient. The dataset is stored into
two python lists (or numpy arrays) X and Y; for instance, for
realizations of random variables:

import numpy as np
X = np.random.rand(100, 2)
alpha = np.array([1., 2.])
Y = np.dot(X, alpha) + np.random.rand(100)

The two python functions L and L prime are assumed to be
functions of the triplet (w,x,y) where w is the optimiza-
tion variable and (x,y) a data point. For instance, one can
perform risk-sensitive linear regression with:

Define the loss and its derivative
def L(w,x,y):

return 0.5 * np.linalg.norm(y -
np.dot(x,w))**2

def L_prime(w,x,y):
return -1.0 * (y - np.dot(x,w)) * x

Before solving the problem (5), we have to instantiate the
RiskOptimizer object of SPQR with the two oracles, fol-
lowing standard usage of scikit-learn. The basic in-
stantiation is as follows.

from SPQR import RiskOptimizer
Instantiate a risk optimizer object
optimizer = RiskOptimizer(L, L_prime)

RiskOptimizer inherits from scikit-learn’s estima-
tors: we use the fit method to run the optimization algo-
rithm on the data, providing a solution of (5).

Running the algorithm
optimizer.fit(X,Y)
lst_iterates = optimizer.list_iterates
sol = optimizer.solution

4. NUMERICAL ILLUSTRATIONS

We compare the proposed approach (4) with the common ap-
proach using empirical risk minimization on synthetic and
real data. We solve the ordinary least squares problem

min
w∈Rd

E(xi,yi)∼D
(
(yi − w>xi)2

)
using the corresponding function of scikit-learn (by
calling LinearRegression.fit(X,Y) method). We
solve its risk-sensitive counterpart

min
w∈Rd

[Q̄p](xi,yi)∼D
(
(yi − w>xi)2

)
using our toolbox with risk-sensitive linear regression, Eu-
clidean smoothing (with µ = 1000), and L-BGFS as opti-
mizer (see Sec. 3).

4.1. Synthetic Dataset

We consider a regression task on a synthetic training dataset
of n = 104 points in R40 × R. The design matrix X =
(xi)1≤i≤n is generated with the make low rank matrix
procedure of scikit learn [21] with a rank 30. For a
given model parameter w̄ ∈ R, we generate the data accord-
ing to

yi = x>i w̄ + εi.

The noise εi is defined here as a mixture

εi = βεN + (1− β)εL

where all random variables are independent, εN follows a
standard normal distribution, εL follows a Laplace distribu-
tion with location µ = 10 and scale s = 1, and β follows

a Bernoulli distribution with parameter p = 0.8. Define the
squared residuals (or losses)

r2
i = (yi − w>xi)2 for i = 1, . . . , n

and the p-quantiles of the empirical distribution of (r2
i)i=1,...,n

for p = 0.5 and p = 0.9.

Model Mean p-quantile of the loss
p = 0.5 p = 0.9

E 16.45 5.55 60.2
Q̄p − p = 0.5 18.75 13.9 41.2
Q̄p − p = 0.7 22.3 20.7 36.6
Q̄p − p = 0.9 23.7 22.5 37.7

Table 1. Quantiles of the empirical distribution of residuals
on the test.

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

Training Loss Distribution

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25

Test Loss Distribution

Ordinary Least Squares Risk-averse Regression

Fig. 1. Quantiles of the empirical distribution of residuals on
the test. The risk-sensitive model was trained with p = 0.9.

We report the p-quantiles and the distribution of losses
obtained on the training dataset and on a test dataset of 2000
data points independently generated with the same procedure;
see Table 1 and Figure 1. As p grows, the superquantile-based
or risk-sensitive model shifts the upper tail on errors to the
left, which shows an improved performance on extreme cases.
This comes with the price of lower performances on inputs
well managed by the standard approach (see metrics for p =
0.5 in Table 1).

4.2. Real Dataset

We consider the superconductivity dataset [24] which con-
tains the information of 21, 263 superconductors. The learn-
ing task is to predict the critical temperature of a superconduc-
tor from the 10 most important features as selected by [24].
We split the dataset into a training set and a testing set with a
ratio 80%/20%.

We report in Figure 2 the comparison between the quan-
tiles of the testing and training loss distribution respectively.
In terms of the quantile at 90%, the proposed approach dis-
play better statistical behavior on the testing loss than the
common approach based on empirical risk minimization.
This is in line with the aim of the formulation considered,
which seeks to gain a better control on the tails of the loss
distribution.

Model Mean p-quantile of the loss
p = 0.9 p = 0.95 p = 0.99

E 16.5 35.8 42.7 55.7
Q̄p − p = 0.8 17.4 34.7 41.0 53.8
Q̄p − p = 0.9 18.1 35.6 41.0 53.6
Q̄p − p = 0.95 18.9 36.5 41.4 53.6

Table 2. Metrics of the distribution of the loss values ri on the test
superconductivity dataset

40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Training Loss Distribution

Ordinary Least Squares
Risk-averse Regression

40 50 60 70 80
0.000

0.005

0.010

0.015

0.020

0.025

0.030
Test Loss Distribution

Ordinary Least Squares
Risk-averse Regression

Fig. 2. Distribution of the loss values ri on the train and test
superconductivity dataset. The risk-sensitive model is trained
with p = 0.9.

5. CONCLUSION

Risk-sensitive optimization plays a major role in the design
of safer models for decision-making and has recently gained
interest in machine learning. We provide a toolbox to tackle
superquantile-based learning problems using first-order op-
timization algorithms. Numerical illustrations on regression
tasks show an improved statistical behavior in terms of higher
quantiles of the testing loss.

6. REFERENCES

[1] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar, “Do imagenet classifiers general-
ize to imagenet?,” arXiv:1902.10811, 2019.

[2] Rachel Metz, “Microsoft’s neo-Nazi sexbot was a great
lesson for makers of AI assistants,” Artificial Intelli-
gence, March 2018.

[3] Will Knight, “A self-driving Uber has killed a pedestrian
in Arizona,” Ethical Tech, March 2018.

[4] R.T. Rockafellar, S. Uryasev, and M. Zabarankin, “Risk
tuning with generalized linear regression,” Mathematics
of Operations Research, 2008.

[5] J. Lee and M. Raginsky, “Minimax statistical learning
with Wasserstein distances,” in Advances in Neural In-
formation Processing Systems, 2018.

[6] J. C. Duchi and H. Namkoong, “Variance-based Regu-
larization with Convex Objectives.,” Journal of Machine
Learning Research, 2019.

[7] D. Kuhn, P.M. Esfahani, V. Anh Nguyen, and
S. Shafieezadeh-Abadeh, “Wasserstein distributionally

robust optimization: Theory and applications in ma-
chine learning,” in Operations Research & Management
Science in the Age of Analytics. INFORMS, 2019.

[8] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust
optimization, Princeton University Press, 2009.

[9] A.B. Owen, Empirical Likelihood, Chapman & Hal-
l/CRC Monographs on Statistics & Applied Probability.
CRC Press, 2001.

[10] T. Rockafellar and S. Uryasev, “Optimization of Condi-
tional Value-at-Risk,” Journal of Risk, 2000.

[11] A. Ben-Tal and M. Teboulle, “An old-new concept of
convex risk measures: The optimized certainty equiva-
lent,” Mathematical Finance, 2007.

[12] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lec-
tures on stochastic programming: modeling and theory,
SIAM, 2014.

[13] R. T. Rockafellar and J. O Royset, “Superquantiles and
their applications to risk, random variables, and regres-
sion,” in Theory Driven by Influential Applications. IN-
FORMS, 2013.

[14] H. Föllmer and A. Schied, “Convex measures of risk
and trading constraints,” Finance and stochastics, 2002.

[15] R.T. Rockafellar, J.O. Royset, and S.I. Miranda, “Su-
perquantile regression with applications to buffered
reliability, uncertainty quantification, and conditional
value-at-risk,” European Journal of Operational Re-
search, 2014.

[16] Y. Nesterov, “Smooth minimization of non-smooth
functions,” Mathematical programming, 2005.

[17] A. Ruszczyński and A. Shapiro, “Optimization of con-
vex risk functions,” Mathematics of operations re-
search, 2006.

[18] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis
and minimization algorithms I: Fundamentals, Springer
science & business media, 2013.

[19] A. Beck and M. Teboulle, “Smoothing and first order
methods: A unified framework,” SIAM Journal on Op-
timization, 2012.

[20] L. Condat, “Fast projection onto the simplex and the l1
ball,” Mathematical Programming, 2016.

[21] F. Pedregosa et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, 2011.

[22] Y. Nesterov, “Primal-dual subgradient methods for con-
vex problems,” Mathematical programming, 2009.

[23] Y. Nesterov, “A method for solving the convex program-
ming problem with convergence rate O(1/k2),” Dokl.
Akad. Nauk SSSR, 1983.

[24] K. Hamidieh, “A data-driven statistical model for pre-
dicting the critical temperature of a superconductor,”
Computational Materials Science, 2018.

