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Training Distribution
Testing Distribution

E.g.: Next word prediction on mobile phone - data distribution depends on the user.

Classical Supervised Machine Learning

Supervised Learning
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Safety for Ordinary Least Squares

Expectation is Risk Neutral

Ordinary Least Squares
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Safety for Ordinary Least Squares

Expectation is Risk Neutral

Not safe

Not safe

safe

safe

Building a Risk-averse model

[Rockafellar, Uryasev 00’]

Ordinary Least Squares
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Dual Formulation for the Superquantile

Empirical Risk Minimization

Ordinary Least Squares
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Ordinary Least Squares

Empirical Risk Minimization

Dual Formulation for the Superquantile



16

Empirical Risk Minimization

Ambiguity Set

Dual Formulation for the Superquantile

Distributionally Robust Optimization

Ordinary Least Squares
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Distributionally Robust Optimization

Ambiguity Set
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Empirical Risk Minimization

Dual Formulation for the Superquantile

Ordinary Least Squares

[Ben-Tal, Teboulle 07’]
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Oracle

X,Y

USAGE

L(w,x,y)

L_prime(w,x,y)

X,Y

Input

Dataset

Solving  min
w∈ℝd

Q̄p(L(w))



22

Oracle

X,Y

USAGE

Example : Least squares regression

In[1]: import numpy as np
# Define the loss and derivative
def L(w, x, y):
    return (y - np.dot(x,w))**2 
def L_prime(w, x, y):
    return -2.0 * (y - np.dot(x,w)) * x 

# The dataset
X = np.random.rand(100,2)
alpha = np.array([1.,2.])
Y = np.dot(X, alpha) + np.random.rand(100)

In[2]:

L(w,x,y)

L_prime(w,x,y)

X,Y

Input

Dataset

How to solve:  min
w∈ℝd

Q̄p(L(w))



The RiskOptimizer Object

# Running the algorithm
optimiser.fit(X,Y)
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USAGE

In[3]:

In[4]:

Input

Oracle

X,YDataset

L(w,x,y)

L_prime(w,x,y)

X,Y

Classical Algorithms

How to solve:  min
w∈ℝd

Q̄p(L(w))

Gradient descent, Nesterov Accelerated Gradient,  
Quasi-Newton

If L is convex non-smooth

If L is smooth
Subgradient method, dual averaging

Built on top of  

Scikit-Learn

from spqr import RiskOptimizer
# Instantiate a risk optimiser object
optimiser = RiskOptimizer(L, L_prime, p=0.9)
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How to solve:  min
w∈ℝd

Q̄p(L(w))

USAGE

The RiskOptimizer Object

In[3]: from spqr import RiskOptimizer
# Instantiate a risk optimiser object
optimiser = RiskOptimizer(L, L_prime, p=0.9)

In[4]:

Input

# Running the algorithm
optimiser.fit(X,Y)

The Output

# Solution provided
sol = optimiser.solution

In[5]:

Oracle

X,YDataset

L(w,x,y)

L_prime(w,x,y)

X,Y

Algorithms

Built on top of  

Scikit-Learn

Gradient descent, Nesterov Accelerated Gradient,  
Quasi-Newton

If L is convex non-smooth

If L is smooth
Subgradient method, dual averaging
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DOCUMENTATION
https://yassine-laguel.github.io/spqr/
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NUMERICAL EXPERIMENTS

On a synthetic dataset

Data Generation

Noise Modeling

Normal (0,1) Laplace (10,1)

Squared Residuals

Bernoulli (0.8)

Safety parameter p=0.9 
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NUMERICAL EXPERIMENTS

On a synthetic dataset On the superconductivity dataset

Data Generation

Noise Modeling

Normal (0,1) Laplace (10,1)

Squared Residuals

Learning Task : predict the critical temperature 
of a superconductor from 10 given features 

 

Method Mean
p-quantile of the Loss 

p=0.90 p=0.95 p=0.99

𝔼

Q̄p , p = 0.8

Q̄p , p = 0.9

Q̄p , p = 0.95

16 . 5 35.8 42.7 55.7

17.4 34 . 7 41 . 0 53.8
18.1 35.6 41 . 0 53 . 6

18.9 36.5 41.4 53 . 6

Bernoulli (0.8)

Safety parameter p=0.9 



Behind 

SPQR3
1Safety in 

Supervised ML 2 THE TOOLBOX 

SPQR



29

SUBGRADIENT ORACLE

Dual Formulation of Superquantiles

“ -norm constraint”∞

“simplex constraint”
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SUBGRADIENT ORACLE

Dual Formulation of Superquantiles

( ⋆ )

Subgradient Formula

Assuming                           is convex

Not Reduced to a singleton!

Computational complexity 𝒪(n)
“ -norm constraint”∞

“simplex constraint”

0

1

1

1



31

SMOOTHED GRADIENT ORACLE

Dual Formulation of Superquantiles

Strongly convex

“ -norm constraint”∞

“simplex constraint”
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Nesterov’s Smoothing
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SMOOTHED GRADIENT ORACLE

Dual Formulation of Superquantiles

Strongly convex

Smoothing Procedure

Based on Lagrangian Duality.

Comes back to the computation of the p-quantile 
of                 .

Choice of the prox-function

(quadratic)

(entropic)

“ -norm constraint”∞

“simplex constraint”

0

1

1

1

Nesterov’s Smoothing



CONCLUSION & PERSPECTIVES
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First-order oracle for Safe Supervised 
Machine Learning

Smoothing with a fast computation procedure

A Toolbox for effective minimization of superquantiles


CONCLUSION & PERSPECTIVES

https://yassine-laguel.github.io/spqr/

Feel free to ask questions : yassine.laguel@univ-grenoble-alpes.fr

Potential Applications in Distributed Settings including Federated Learning

mailto:yassine.laguel@univ-grenoble-alpes.fr

