FIRST-ORDER OPTIMIZATION FOR SUPERQUANTILE-BASED SUPERVISED LEARNING

MACHINE LEARNING FOR SIGNAL PROCESSING - 2020 Yassine LAGUEL^{*} – Joint work with J. Malick[^] and Z. Harchaoui[^]

*Université Grenoble Alpes - CNRS - University of Washington

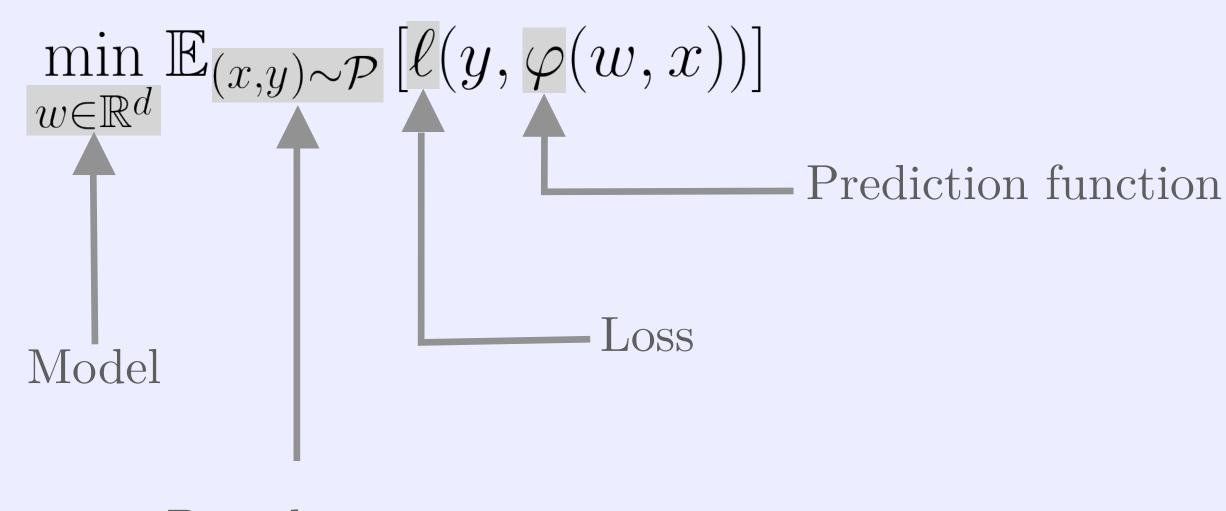
Safety in Supervised ML

THE TOOLBOX SPQR

Classical Supervised Machine Learning

$$\min_{w \in \mathbb{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\ell(y, \varphi(w, x)) \right]$$

Classical Supervised Machine Learning

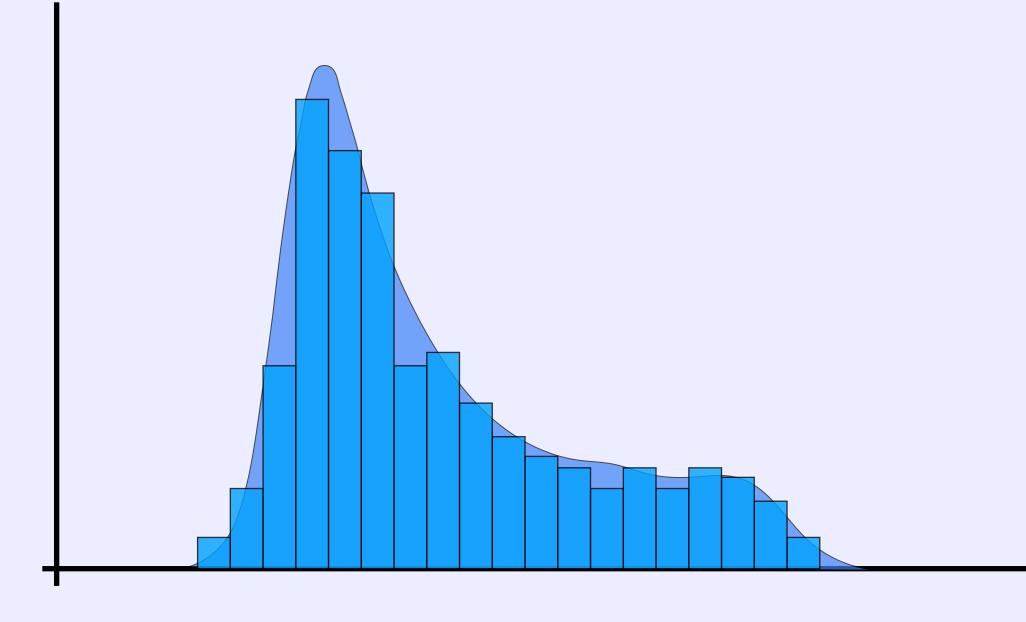


Distribution

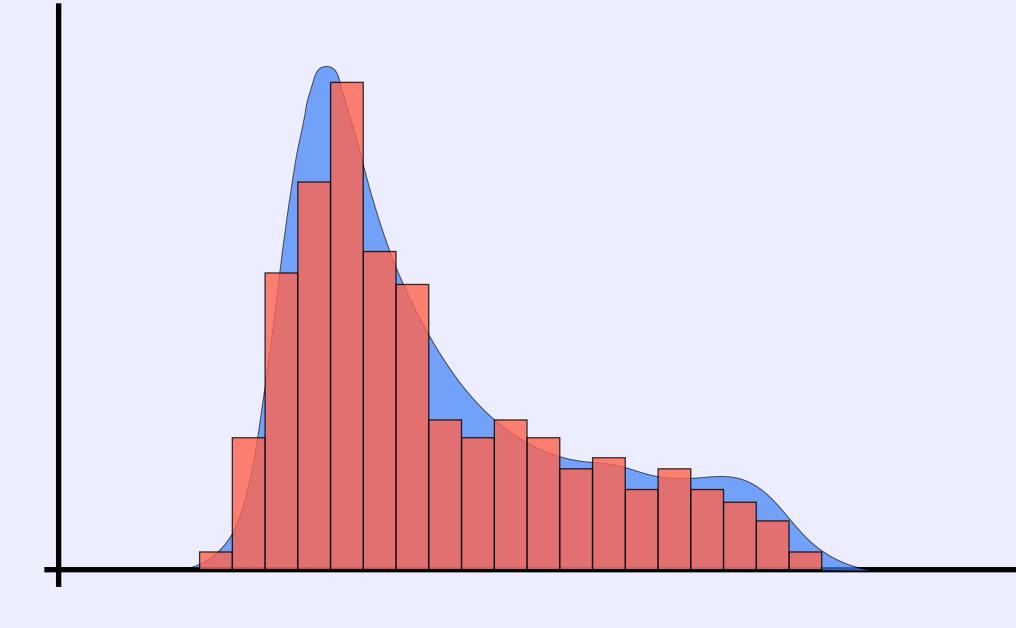
$(y_1), \ldots, (x_n, y_n) \sim \mathcal{P}$ Training Distribution Classical Supervised Machine Learning

$$(x_1,$$

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\ell(y, \varphi(w, x)) \right]$

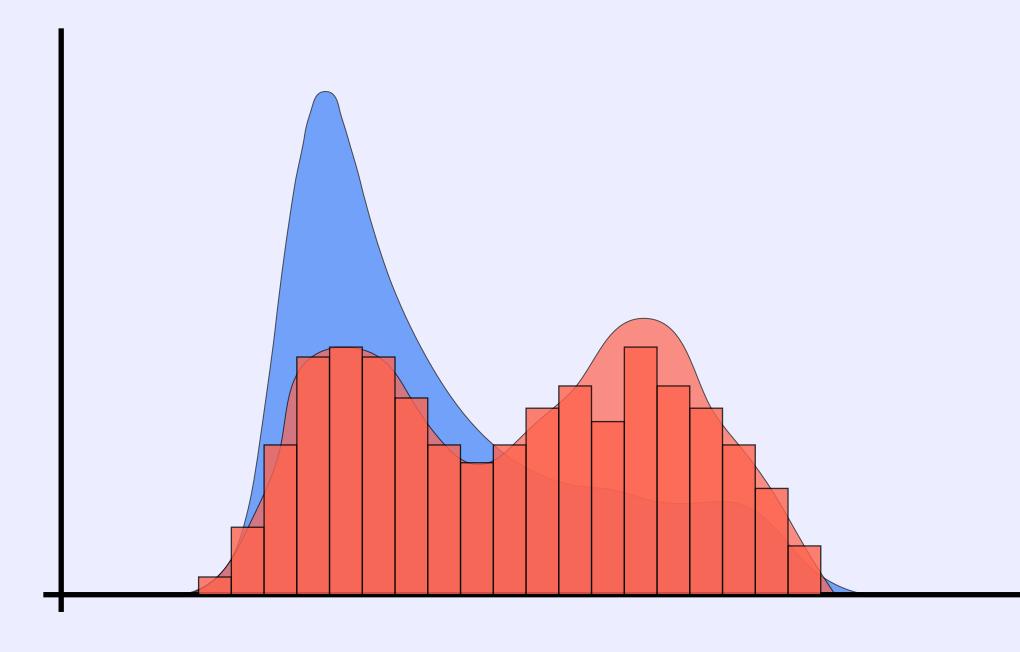


Classical Supervised Machine Learning $(x_1, \\ \min_{w \in \mathbb{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\ell(y, \varphi(w, x)) \right]$ $(x'_1, \\ (x'_1, y) \in \mathbb{R}^d = 0$



 $(x_1, y_1), \ldots, (x_n, y_n) \sim \mathcal{P}$ Training Distribution $(x'_1, y'_1), \ldots, (x'_n, y'_n) \sim \mathcal{P}'$ Testing Distribution

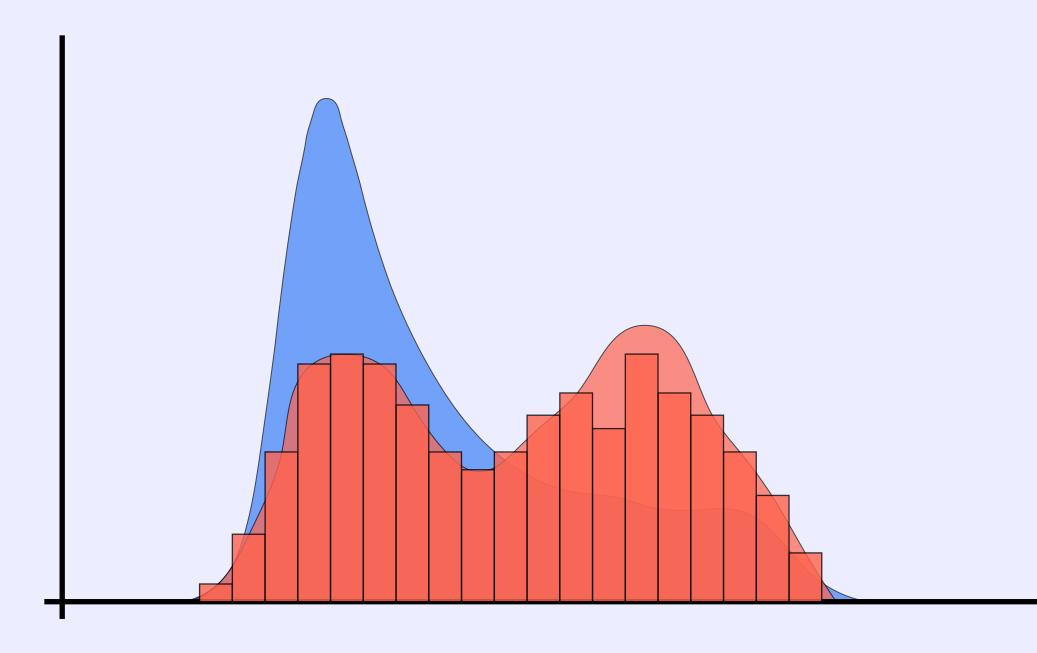
Classical Supervised Machine Learning $(x_1, w_1, w_2) \in \mathbb{R}^d \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\ell(y, \varphi(w, x)) \right]$



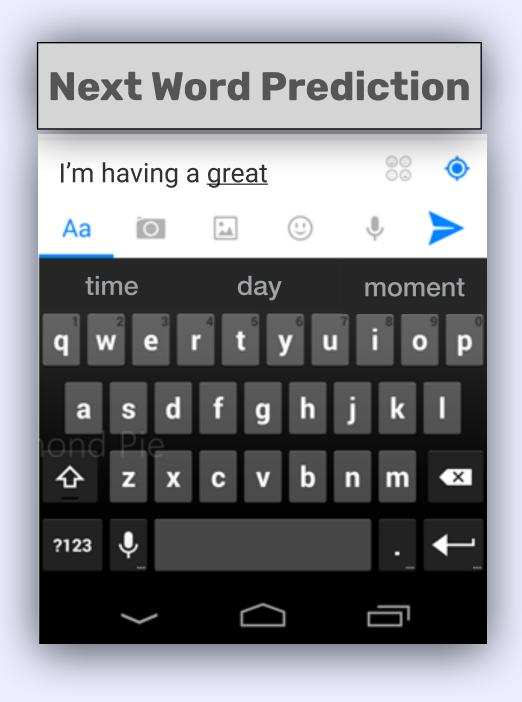
 $(x_1, y_1), \ldots, (x_n, y_n) \sim \mathcal{P}$ Training Distribution $(x'_1, y'_1), \ldots, (x'_n, y'_n) \sim \mathcal{P}'$ Testing Distribution

Classical Supervised Machine Learning $(x_1, \\ \min_{w \in \mathbb{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\ell(y, \varphi(w, x)) \right]$ $(x'_1, \\ (x'_1, w) \in \mathbb{R}^d = 0$

E.g.: Next word prediction on mobile phone - data distribution depends on the user.

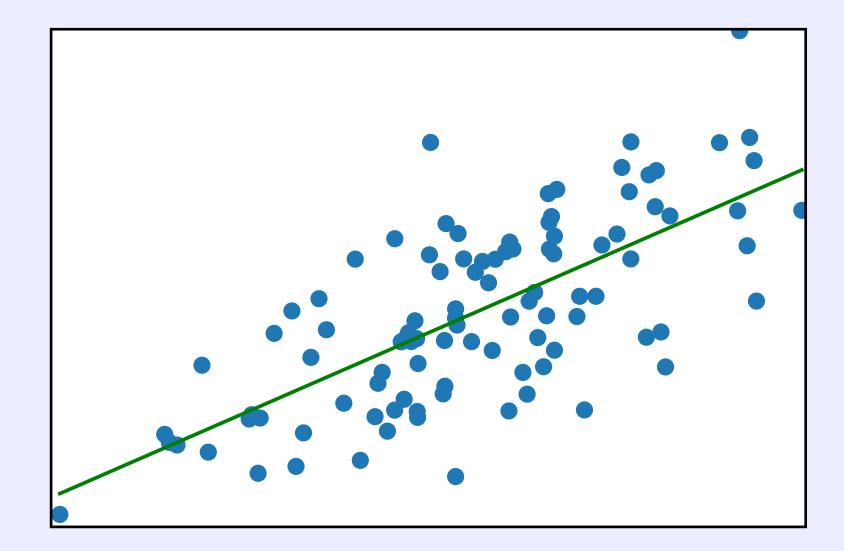


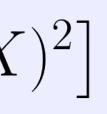
 $(x_1, y_1), \ldots, (x_n, y_n) \sim \mathcal{P}$ Training Distribution $(x'_1, y'_1), \ldots, (x'_n, y'_n) \sim \mathcal{P}'$ Testing Distribution



Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X + w) \right]$$

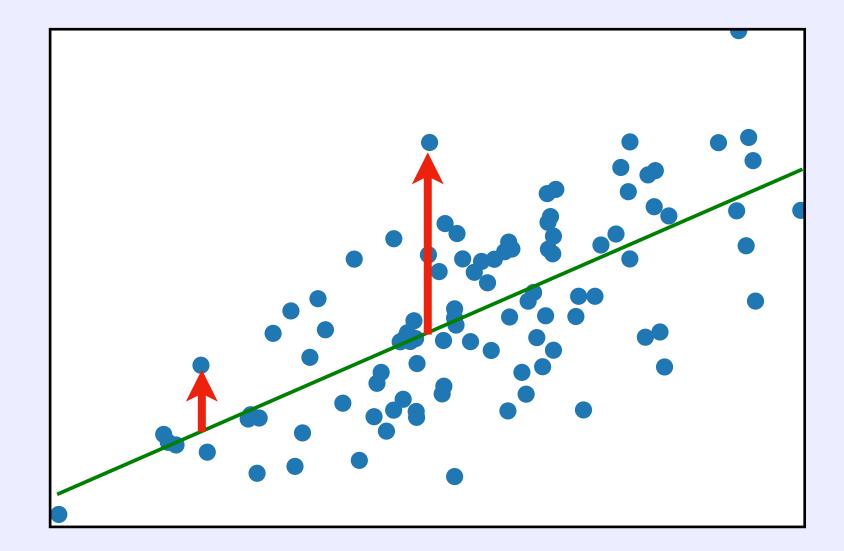
Expectation is Risk Neutral

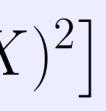




Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X + w) \right]$$

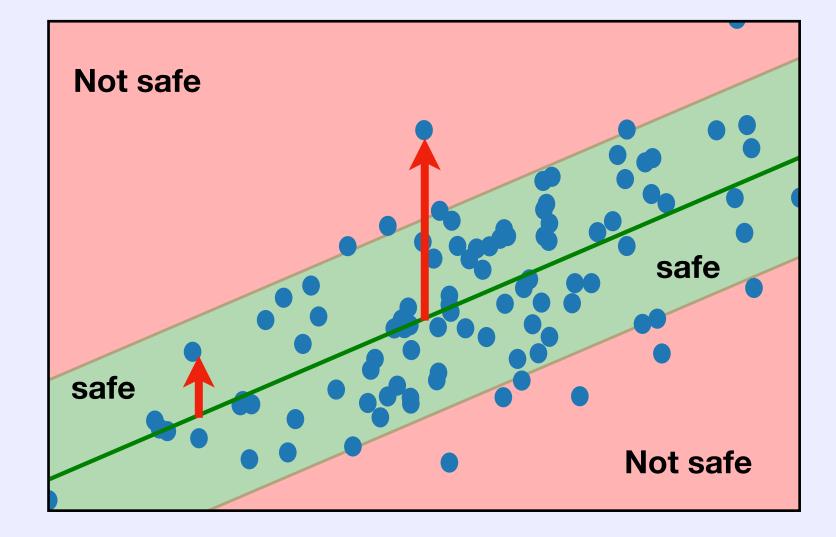
Expectation is Risk Neutral

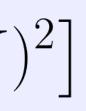




Ordinary Least Squares $\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X)^2 \right]$

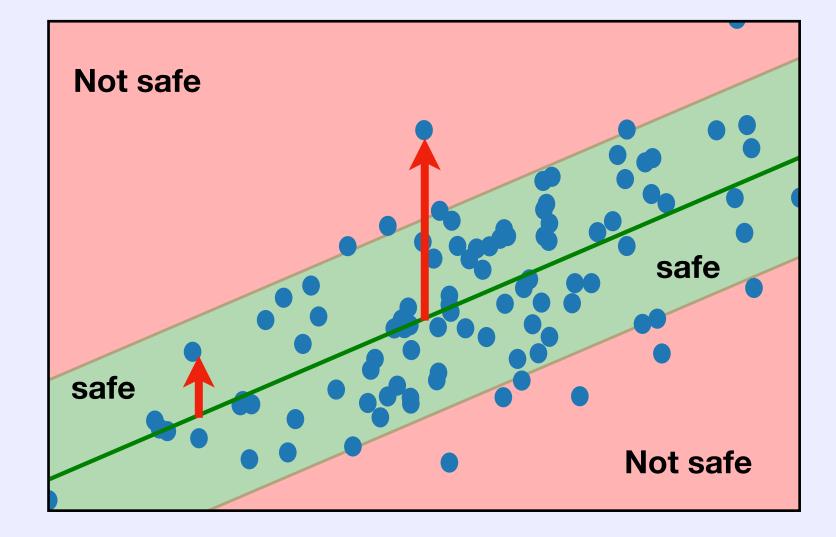
Expectation is Risk Neutral

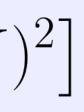




Ordinary Least Squares $\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X)^2 \right]$

Expectation is Risk Neutral



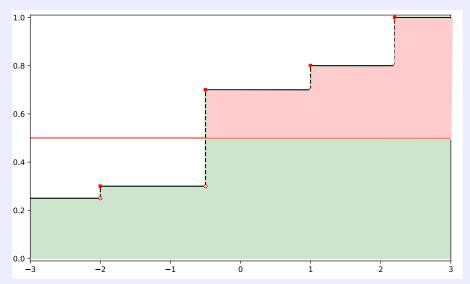


Building a Risk-averse model

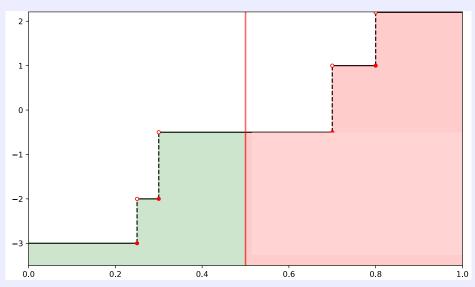
$$\varepsilon = (Y - w^{\top}X)^2$$

p-quantile $Q_p(\varepsilon) = \min \{t \in \mathbb{R}, \mathbb{P} [\varepsilon \le t] \ge p\}$

Cumulative distribution function

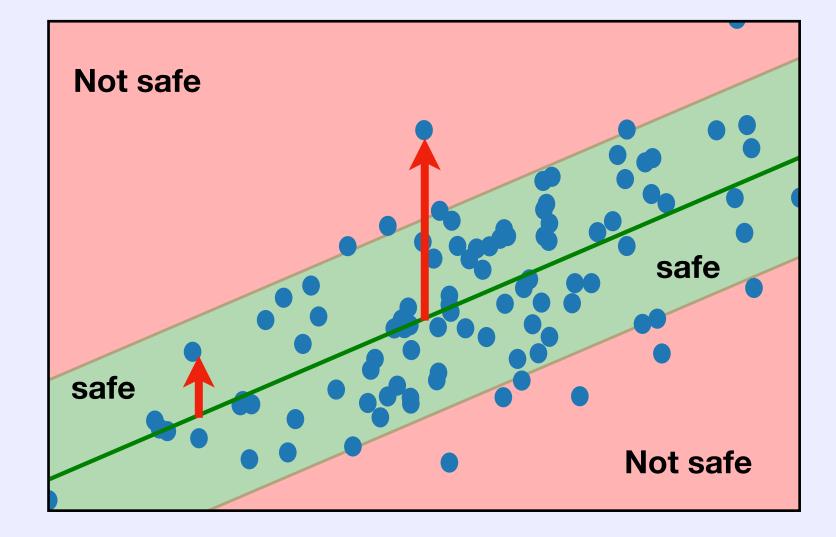


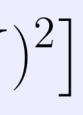
Quantile function



Ordinary Least Squares $\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X)^2 \right]$

Expectation is Risk Neutral





Building a Risk-averse model

$$\varepsilon = (Y - w^{\top}X)^2$$

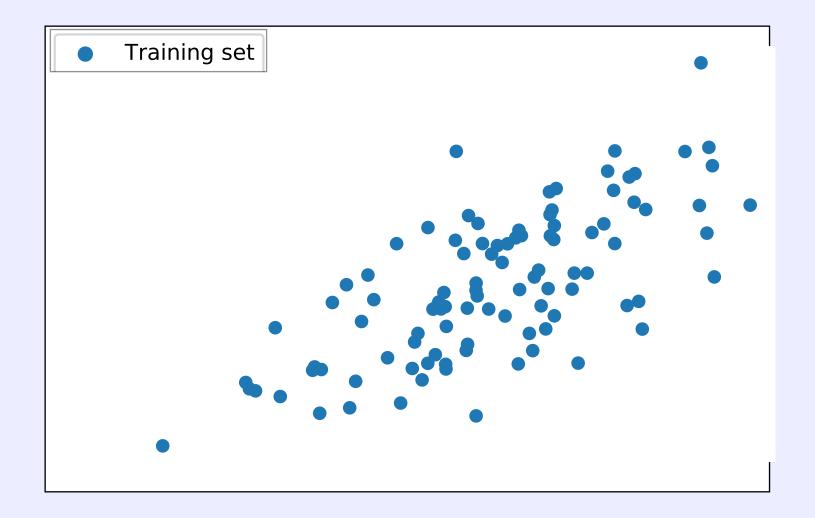
p-quantile
$$Q_p(\varepsilon) = \min \{t \in \mathbb{R}, \mathbb{P} [\varepsilon \le t] \ge p\}$$

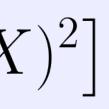
Cumulative distribution function Quantile function *p*-superquantile $\bar{Q}_p(\varepsilon) = \frac{1}{1-p} \int_{p'=p}^1 Q_{p'}(\varepsilon) dp'$ [Rockafellar, Uryasev 00']

Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X - w \nabla X) \right]$$

Empirical Risk Minimization

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 = \min_{w \in \mathbb{R}^d} \mathbb{E}_{\hat{\mathbb{P}}_n} (Y - w^\top X)^2$$

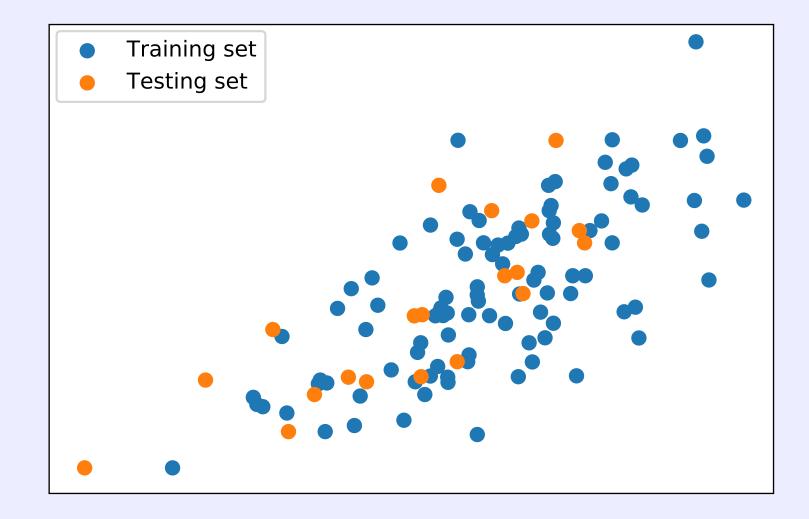


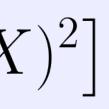


Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X - w \nabla X) \right]$$

Empirical Risk Minimization

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 = \min_{w \in \mathbb{R}^d} \mathbb{E}_{\hat{\mathbb{P}}_n} (Y - w^\top X)^2$$

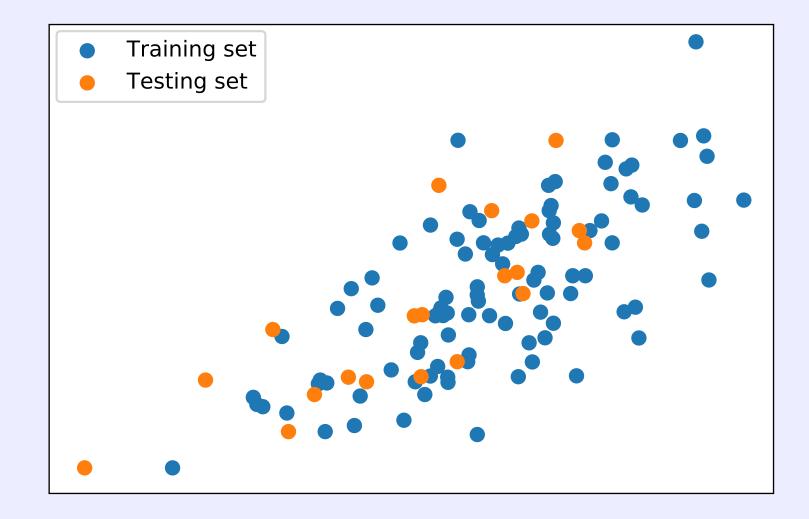


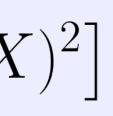


Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X - w \nabla X) \right]$$

Empirical Risk Minimization

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 = \min_{w \in \mathbb{R}^d} \mathbb{E}_{\hat{\mathbb{P}}_n} (Y - w^\top X)^2$$





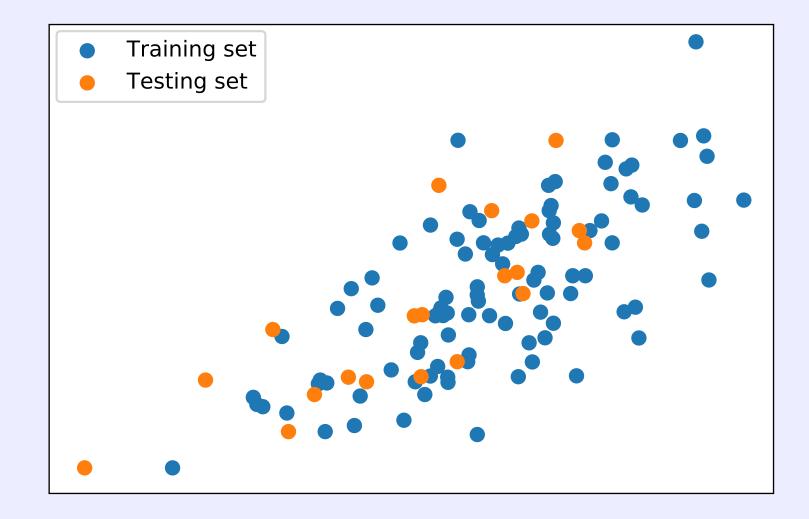
Distributionally Robust Optimization

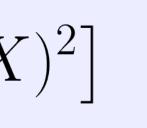
$\min_{w \in \mathbb{R}^d} \max_{Q \in \mathcal{A}_p} \mathbb{E}_Q[(Y - w^\top X)^2]$ Ambiguity Set

Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X - w \nabla X) \right]$$

Empirical Risk Minimization

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 = \min_{w \in \mathbb{R}^d} \mathbb{E}_{\hat{\mathbb{P}}_n} (Y - w^\top X)^2$$



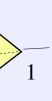


Distributionally Robust Optimization

$$\min_{w \in \mathbb{R}^d} \max_{Q \in \mathcal{A}_p} \mathbb{E}_Q[(Y - w^\top X)^2]$$

$$Ambiguity Set$$

$$\mathcal{A} = \{\hat{\mathbb{P}}_n\}$$

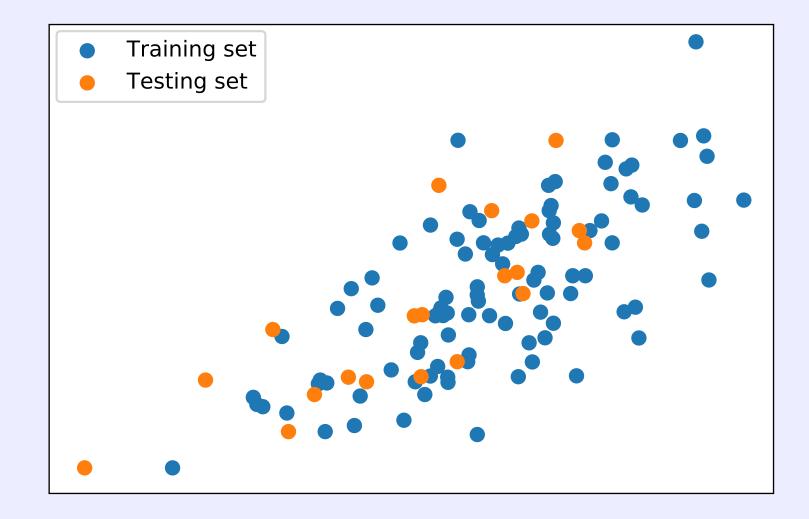


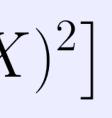
()

Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X - w \nabla X) \right]$$

Empirical Risk Minimization

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 = \min_{w \in \mathbb{R}^d} \mathbb{E}_{\hat{\mathbb{P}}_n} (Y - w^\top X)^2$$





Distributionally Robust Optimization

$$\min_{w \in \mathbb{R}^d} \max_{Q \in \mathcal{A}_p} \mathbb{E}_Q[(Y - w^\top X)^2]$$

$$Ambiguity Set$$

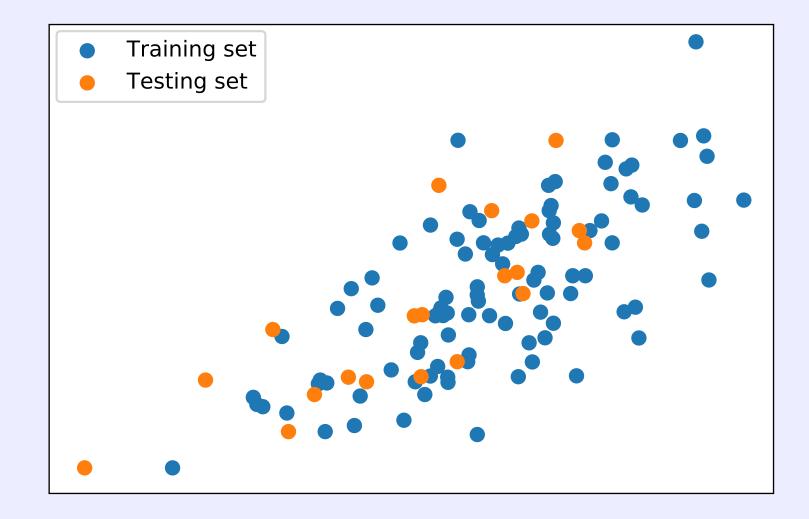
$$\mathcal{A} = \Delta_{n-1}$$

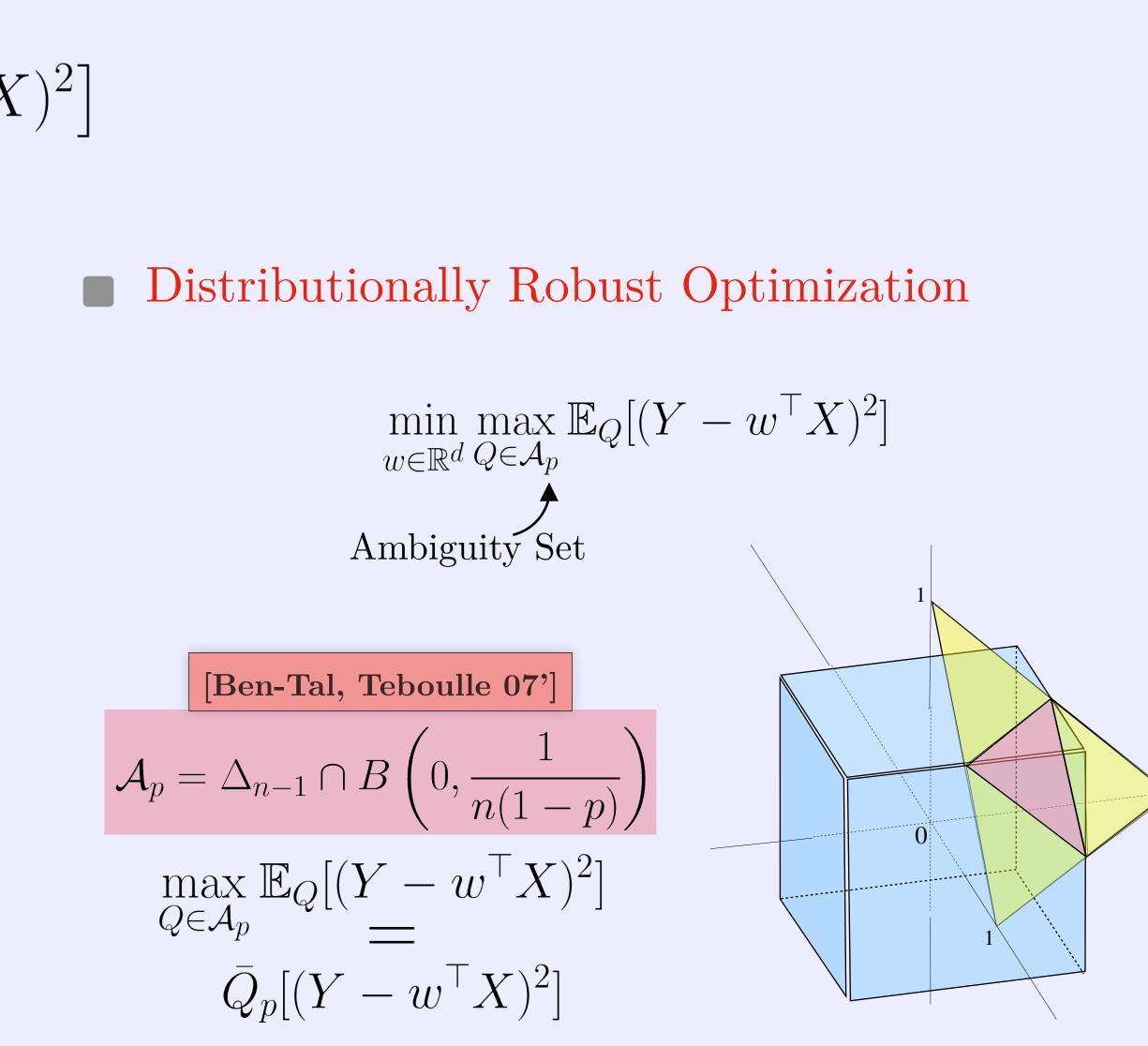
()

Ordinary Least Squares
$$\min_{w \in \mathbb{R}^d} \mathbb{E}\left[(Y - w^\top X - w \nabla X) \right]$$

Empirical Risk Minimization

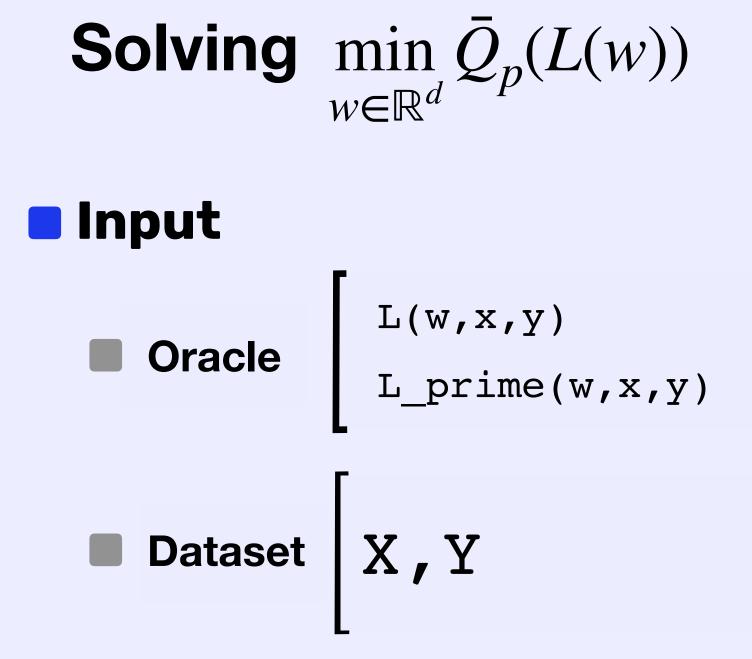
$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 = \min_{w \in \mathbb{R}^d} \mathbb{E}_{\hat{\mathbb{P}}_n} (Y - w^\top X)^2$$

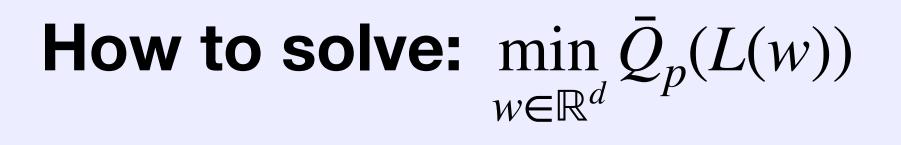


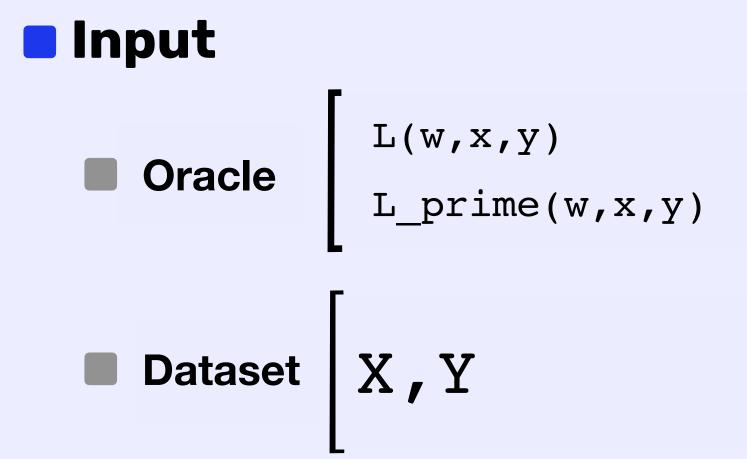


Safety in Supervised ML

THE TOOLBOX

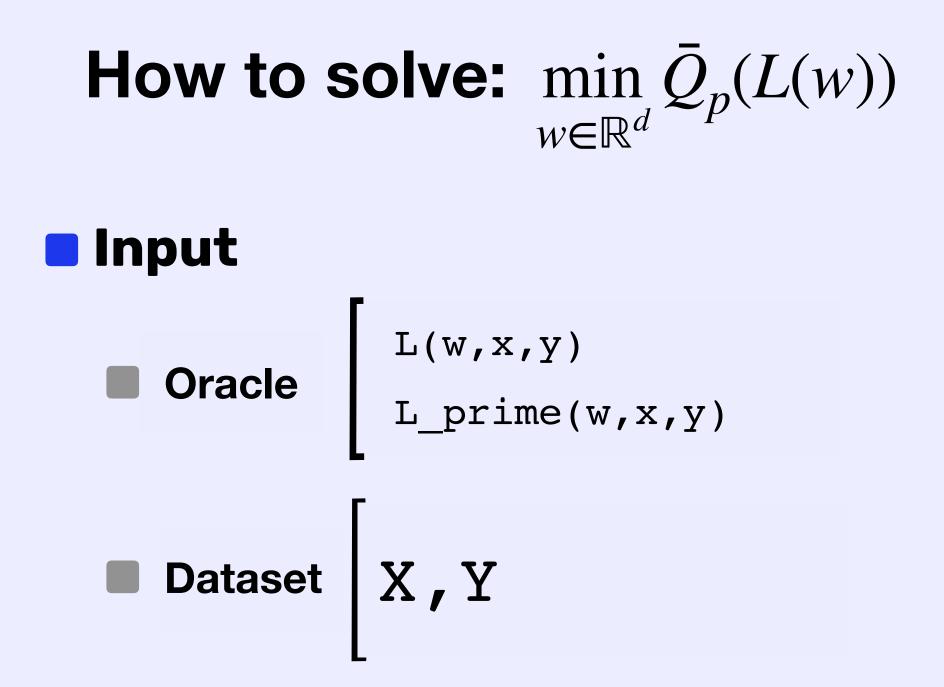






Example : Least squares regression

```
In[1]: import numpy as np
# Define the loss and derivative
def L(w, x, y):
    return (y - np.dot(x,w))**2
def L_prime(w, x, y):
    return -2.0 * (y - np.dot(x,w)) * x
In[2]: # The dataset
X = np.random.rand(100,2)
alpha = np.array([1.,2.])
Y = np.dot(X, alpha) + np.random.rand(100)
```

Classical Algorithms

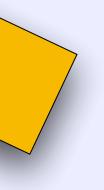
If L is convex non-smooth

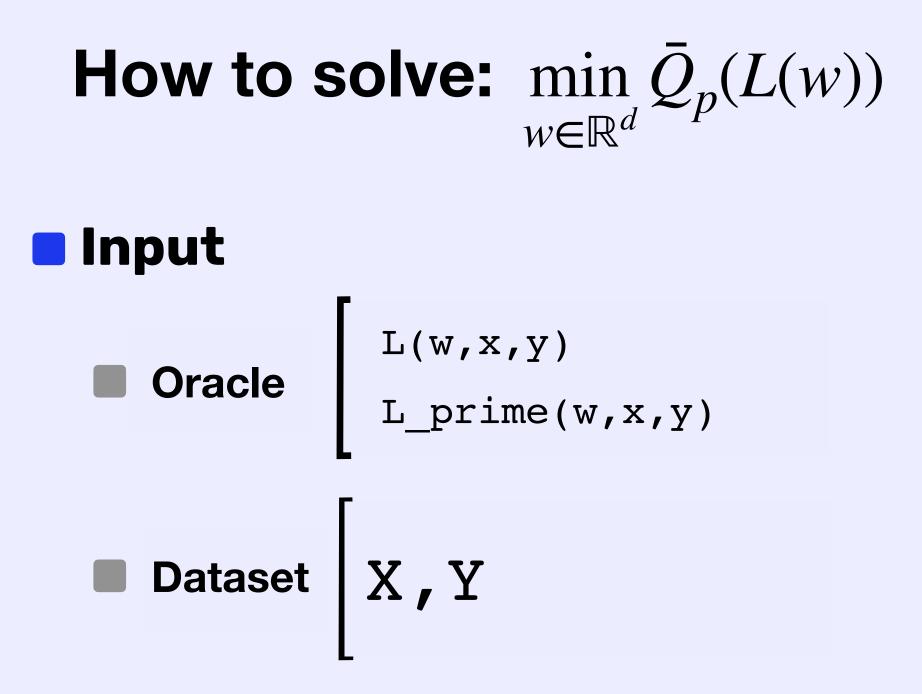
Subgradient method, dual averaging

If L is smooth

Gradient descent, Nesterov Accelerated Gradient, Quasi-Newton

Built on top of Scikit-Learn The RiskOptimizer Object from spqr import RiskOptimizer In[3]: # Instantiate a risk optimiser object optimiser = RiskOptimizer(L, L prime, p=0.9) # Running the algorithm In[4]: optimiser.fit(X,Y)





Algorithms

If L is convex non-smooth

Subgradient method, dual averaging

If L is smooth

Gradient descent, Nesterov Accelerated Gradient, Quasi-Newton

The RiskOptimizer Object

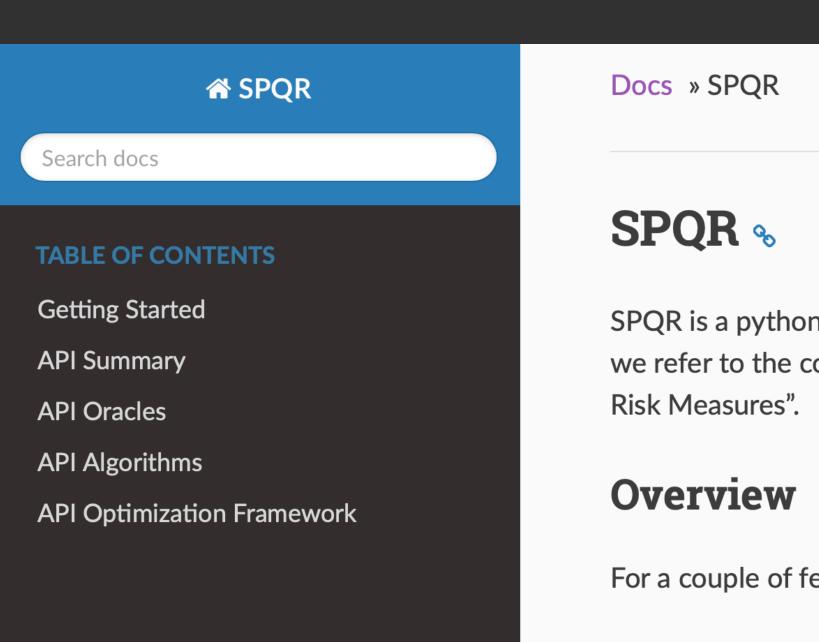
In[3]:	from spqr import RiskOptimizer				
	# Instantiate a risk optimiser object				
	<pre>from spqr import RiskOptimizer # Instantiate a risk optimiser object optimiser = RiskOptimizer(L, L_prime, p=0.9)</pre>				

In[4]: # Running the algorithm optimiser.fit(X,Y)

The Output

In[5]:	<pre># Solution provided sol = optimiser.solution</pre>

DOCUMENTATION https://yassine-laguel.github.io/spqr/



where CVAR denotes the superquantile, also called "conditional value at risk", "average value at risk" or "expected shortfall" and loss function L is assumed to be provided by the user together with the dataset (X, y).

We build oracles for the nonsmooth function ϕ and for a smoothed counterpart ϕ_{μ} . Various firstorder algorithms are proposed to minimise these 2 functions. Among these first order algorithms, one can find the Dual Averaging Method, Nesterov Accelerated Method or BFGS. For instance, quantile regression and superquantile regression can be performed with this toolbox :

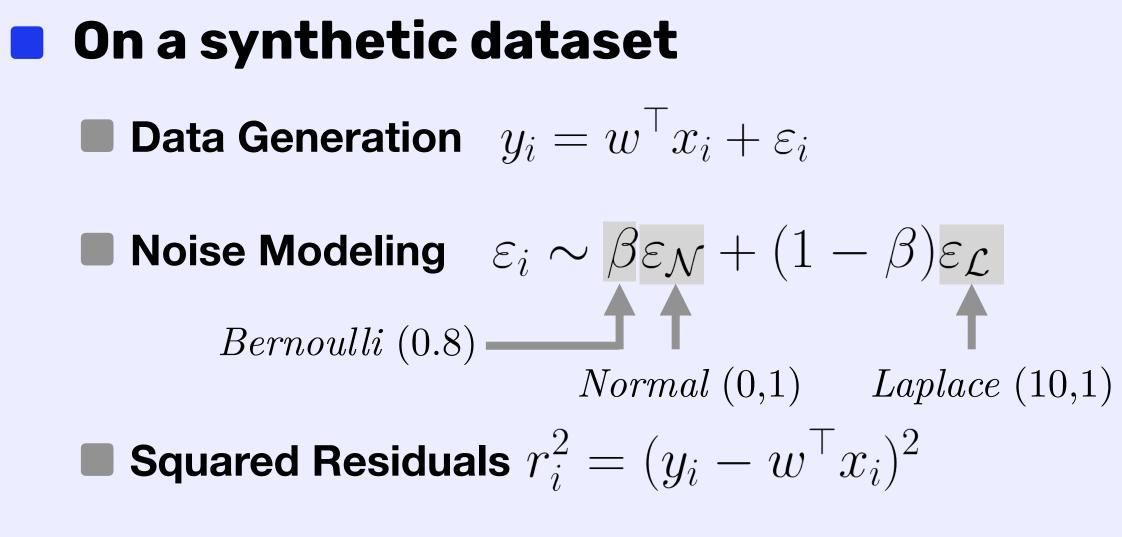
View page source

SPQR is a python toolbox for optimization of superquantile-based risk measures. For more details, we refer to the companion paper "First Order Algorithms for Minimization of superquantile-based

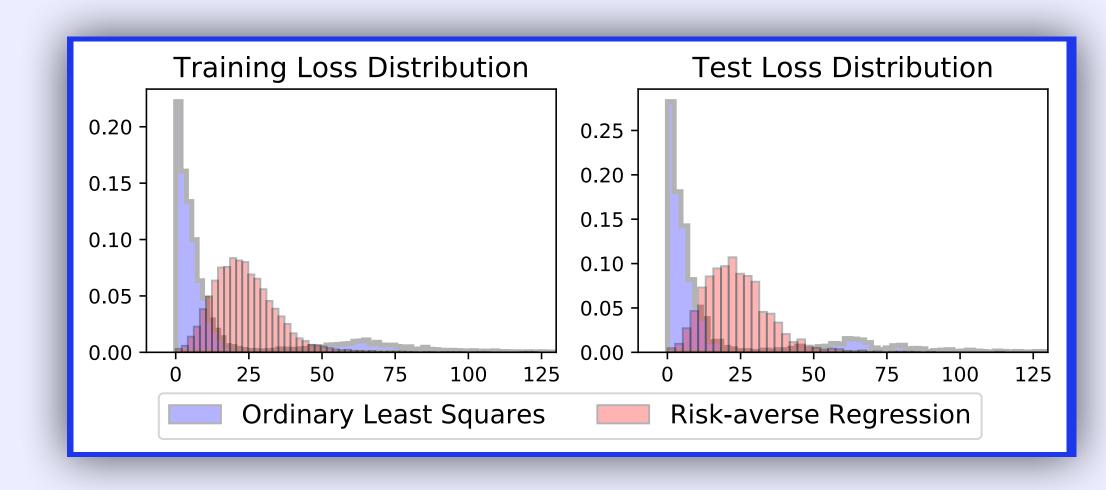
For a couple of features and labels (X, y), this toolbox is aimed at minimizing functions of the form :

 $\phi(w) = \operatorname{CVAR}_p \circ L_{X,y}(w),$

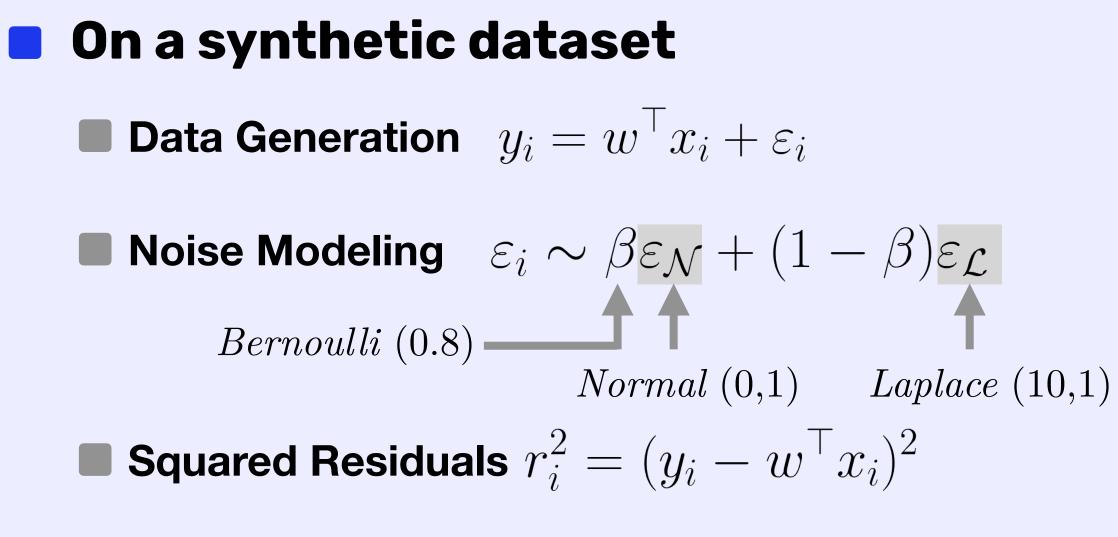
NUMERICAL EXPERIMENTS



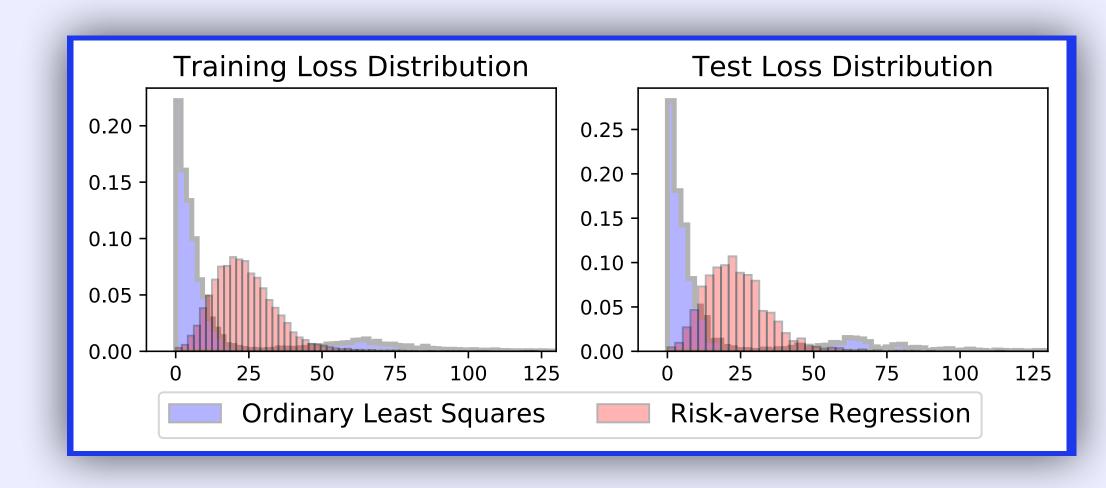
Safety parameter p=0.9



NUMERICAL EXPERIMENTS



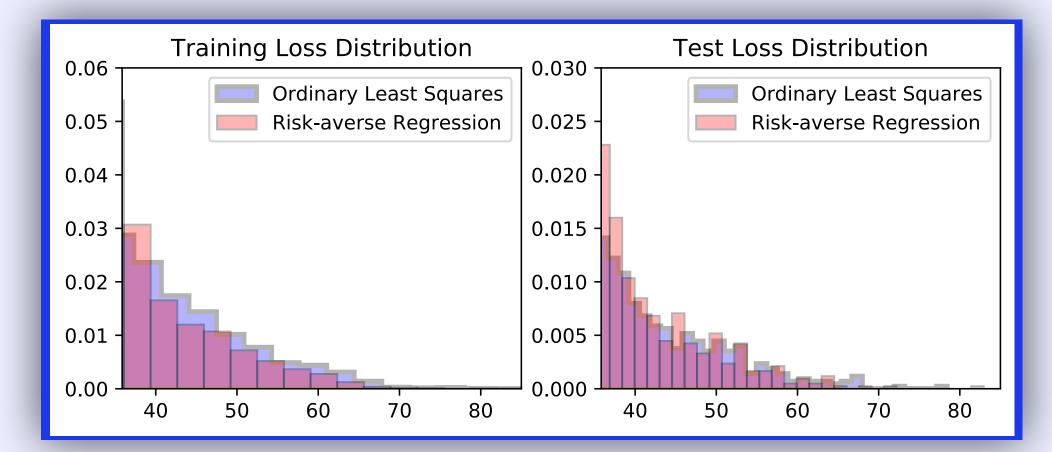
Safety parameter p=0.9

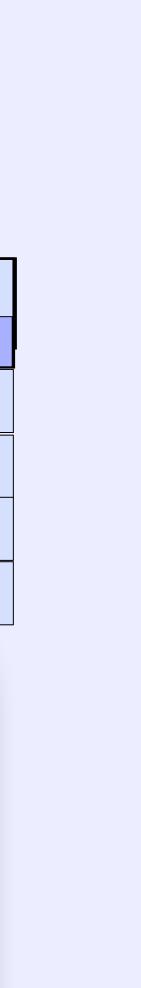


On the superconductivity dataset

Learning Task : predict the critical temperature of a superconductor from 10 given features

Method	Mean	<i>p</i> -quantile of the Loss		
Methou		p=0.90	p=0.95	p=0.99
E	16.5	35.8	42.7	55.7
\bar{Q}_p , $p = 0.8$	17.4	34.7	41.0	53.8
$\bar{Q}_p, p = 0.9$	18.1	35.6	41.0	53.6
$\bar{Q}_p, p = 0.95$	18.9	36.5	41.4	53.6



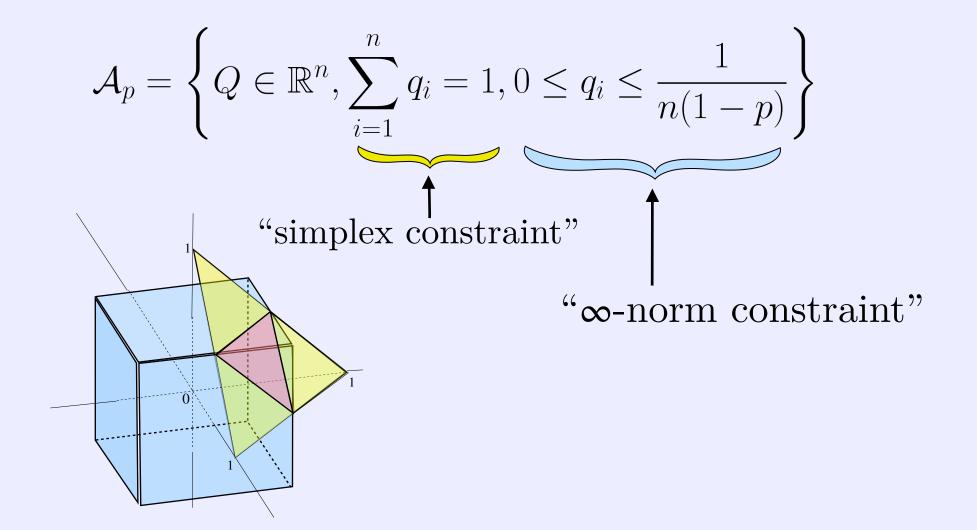


THE TOOLBOX SPQR

SUBGRADIENT ORACLE

Dual Formulation of Superquantiles

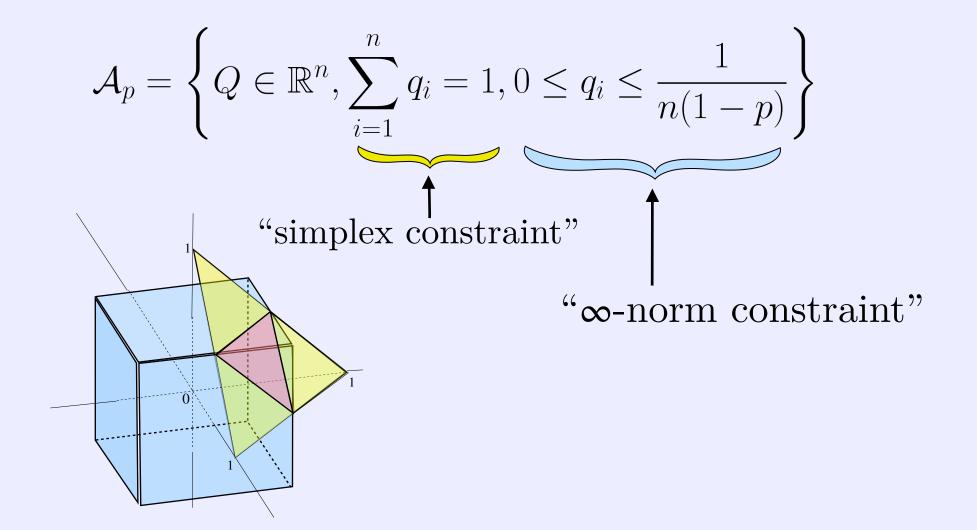
$$\bar{Q}_p(U) = \sup_{Q \in \mathcal{A}_p} \mathbb{E}_Q[U] = \sup_{Q \in \mathcal{A}_p} \langle Q | U \rangle^{(\star)}$$



SUBGRADIENT ORACLE

Dual Formulation of Superquantiles

$$\bar{Q}_p(U) = \sup_{Q \in \mathcal{A}_p} \mathbb{E}_Q[U] = \sup_{Q \in \mathcal{A}_p} \langle Q | U \rangle^{(\star)}$$



Subgradient Formula

• Assuming $w \mapsto L(w, x_i, y_i)$ is convex

$$\partial(\bar{Q}_p \circ L)(w) = \begin{cases} \sum_{i=1}^n Q_i, \partial_w L(w, x_i, y_i), Q \in \operatorname{argmax}_{\mathsf{Not Reduced to a single}} \end{cases}$$

Computational complexity $\mathcal{O}(n)$

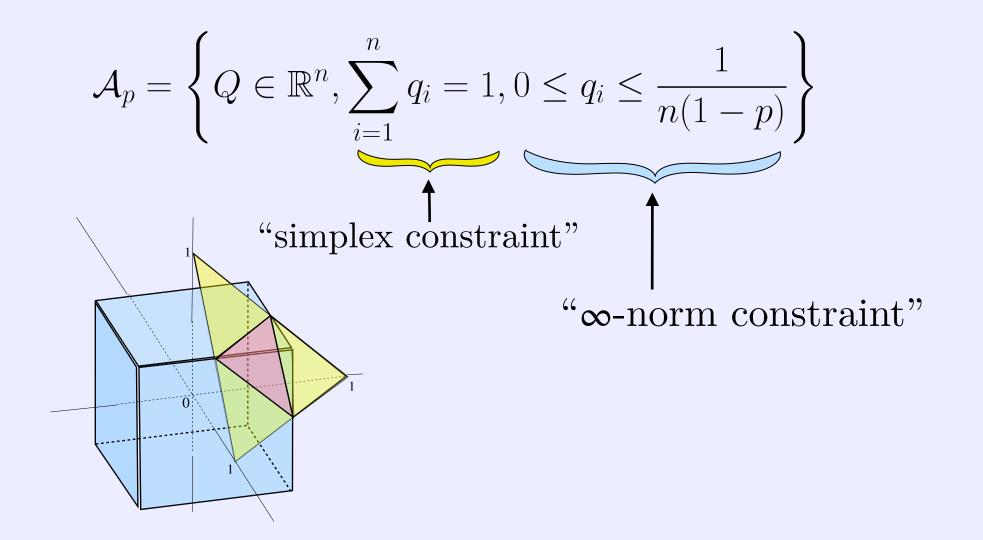
SMOOTHED GRADIENT ORACLE

Dual Formulation of Superquantiles

Strongly convex

$$\bar{Q}_p(U) = \sup_{Q \in \mathcal{A}_p} \mathbb{E}_Q[U] \simeq \sup_{Q \in \mathcal{A}_p} \langle Q | U \rangle - \mu \, d($$

Nesterov's Smoothing



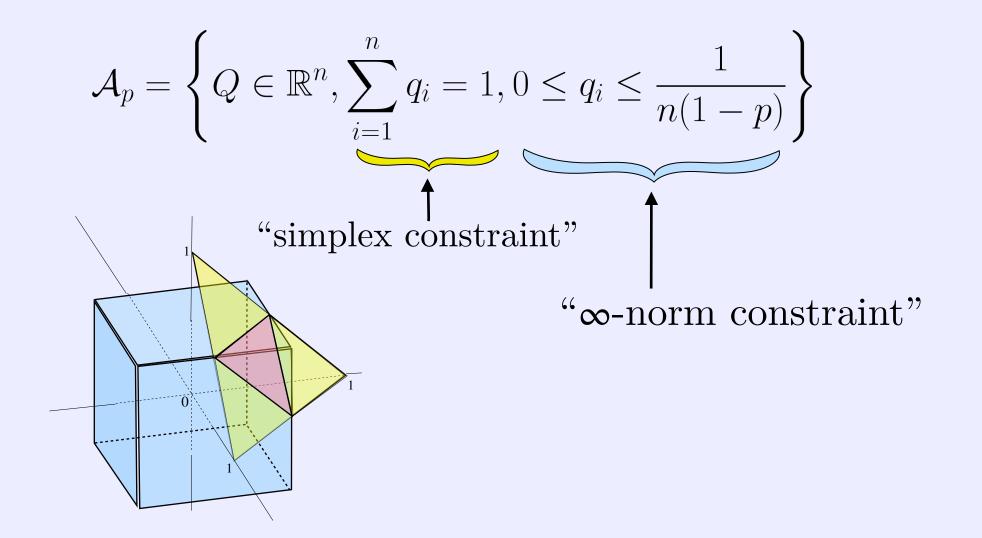
SMOOTHED GRADIENT ORACLE

Dual Formulation of Superquantiles

Strongly convex

$$\bar{Q}_p(U) = \sup_{Q \in \mathcal{A}_p} \mathbb{E}_Q[U] \simeq \sup_{Q \in \mathcal{A}_p} \langle Q | U \rangle - \mu \, d(q)$$

Nesterov's Smoothing



Based on Lagrangian Duality.

Comes back to the computation of the p-quantile of L(w, X, Y).

Choice of the prox-function

$$d(q) = \left\| q - \frac{(1, \dots, 1)^{\top}}{n} \right\|_{2}^{2} \quad \text{(quadratic)}$$

$$d(q) = \sum_{i=1}^{n} q_i \log(n \ q_i) \quad \text{(entropic)}$$

CONCLUSION & PERSPECTIVES

CONCLUSION & PERSPECTIVES

First-order oracle for Safe Supervised Machine Learning

Smoothing with a fast computation procedure

A Toolbox for effective minimization of superquantiles https://yassine-laguel.github.io/spqr/

Potential Applications in Distributed Settings including Federated Learning

Feel free to ask questions : <u>yassine.laguel@univ-grenoble-alpes.fr</u>