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Yassine Laguel
Univ. Grenoble Alpes, Grenoble INP, LJK, Grenoble, France
E-mail: yassine.laguel@univ-grenoble-alpes.fr

Krishna Pillutla
University of Washington, Seattle, USA
E-mail: pillutla@cs.washington.edu

J. Malick
Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
E-mail: jerome.malick@univ-grenoble-alpes.fr

Z. Harchaoui
University of Washington, Seattle, USA
E-mail: zaid@uw.edu

yassine.laguel@univ-grenoble-alpes.fr
pillutla@cs.washington.edu
jerome.malick@univ-grenoble-alpes.fr
zaid@uw.edu


2 Yassine Laguel et al.

1 Introduction

1.1 Superquantiles at Work: Old and New

Risk measures play a crucial role in optimization under uncertainty, involving
problems with an aversion to worst-cases scenarios. Among popular convex
risk measures, the superquantile – also called the Conditional Value at Risk,
Tail Value at Risk, Mean Excess Loss, or Mean Shortfall – has received special
attention. The superquantile has been extensively studied from a convex anal-
ysis perspective: we refer for instance to [44] for a variational formulation of
the superquantile, to [6] for its generalization to a larger class of risk measures,
to [13] for a dual formulation (also later generalized in [46] or [43]) and [41]
for additional convex properties. The superquantile can be traced back to the
paper [5]. These nice theoretical properties have given interesting results in
various applications, ranging from finance [47] to energy planning [14]; for a
thorough discussion and many references, we refer to the seminal work [44],
the classical textbook [50, Chap. 6], or the tutorial paper [40].

More recently, the superquantile has also drawn an increasing attention in
machine learning. In this paper, we give an overview of some of the new
applications of the superquantile in machine learning: we discuss the use of
the superquantile for distributionally robust learning, fair learning, federated
learning, adversarial classification, and reinforcement learning; we also give
toy illustrations and pointers to recent exciting developments.

Superquantile optimization problems are nonsmooth, possibly non-convex, but
also highly structured. In financial or operations research applications, these
nonsmooth optimization problems are usually solved using one of two ap-
proaches: (a) extending specific algorithms (e.g., progressive hedging for risk-
averse multi-stage programming [39]), or, (b) relying on convex programming
(e.g., linear programming coupled with Monte Carlo simulations for portfolio
management [44]). We refer to [42] and [29] for discussions on computational
approaches. In machine learning, recent papers propose to use stochastic first-
order optimization algorithms for superquantile learning; see e.g., [9, 25] and
references therein.

In this paper, we propose a simple alternative. We study the smoothing of su-
perquantile by infimal-convolution, extending and clarifying the results of [22,
Sec. 3]. This opens the way for using first-order methods for smooth opti-
mization: this is of special interest for machine learning applications where
standard algorithms and software rely heavily rely on gradient-based opti-
mization [1, 35]. In fact, optimization guarantees in this context are typi-
cally given for smooth surrogates of the superquantile, e.g., [23, 25]; which
we study and clarify. In view of these applications, we pay attention to pro-
vide efficient procedures for computing gradients of smooth approximations of
superquantile-based functions. We illustrate these smoothed oracles combined
with quasi-Newton methods on simple problems with synthetic or real data.
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We refer to our recent work [22, 23] for more computational experiments, using
particular cases of such efficient smoothed oracles.

More specifically, the contributions of this paper are multiple and can be
pointed out, section by section, as follows:

– We formalize, in Section 2, the existing notion of empirical superquantile
minimization and provide a convergence result of supervised learning.

– We propose, in Section 3, an overview of recent machine learning applica-
tions of superquantiles.

– We study in Section 4 the (sub)gradient calculus of superquantile-based
functions with a focus on computational efficiency. In particular, Section 4.2
studies generalized subgradients of superquantile-based functions and Sec-
tion 4.3 considers gradients of smooth approximations of the superquantile
by inf-convolution. Finally, we establish in Section 4.4 the equivalence be-
tween different inf-convolution schemes, as well as the smoothing by con-
volution. We propose to use quasi-Newton algorithms to minimize these
smoothed approximations.

1.2 Superquantiles: Review and Notation

We recall basic definitions and properties used in this paper. Our notation and
terminology follow closely the ones of [46] and [40]; we refer to these papers
for more details and references.

Consider a probability space Ω, with probability denoted P. For p ∈ (0, 1), the
p-quantile of a random variable U : Ω → R, denoted by Qp(U), is the inverse
of the cumulative distribution function of U : for all t ∈ R we have

Qp(U) ≤ t ⇐⇒ P(U ≤ t) ≥ p . (1)

When e.g., p = 1/2, the p-quantile corresponds the median value of the random
variable. For p ∈ [0, 1), the p-superquantile of U is then defined as the mean
of values of quantiles greater than the threshold p:

Sp(U) =
1

1− p

∫ 1

p

Qp′(U)dp′ . (2)

The analogue to (1) for the superquantile is stronger:

Sp(U) ≤ t ⇐⇒ U is lower than t on average in its p-tail.

The superquantile is thus interpreted as a measure of the upper tail of the
distribution of U . Another interpretation comes from the dual formulation
of superquantiles [13]: Sp(U) can be written as a maximal expectation of U
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with respect to probability measures having a (Radon-Nykodim) derivative
bounded by 1− p

Sp(U) = max
0≤q(·)≤ 1

1−p∫
Ω
q d P(ω)=1

∫
ω∈Ω

U(ω)q(ω)dP(ω) . (3)

When U is a discrete random variable, the above expression simplifies; we
come back to this in Section 4. Finally, for an optimization perspective, the
superquantile also has a nice variational formulation [44].

Sp(U) = min
η∈R

{
η +

1

1− p
E[max(U − η, 0)]

}
. (4)

In this expression, the quantile Qp(U) is obtained as the left end-point of the
solution. This last expression also reveals an important advantage of Sp(U)
over Qp(U) as a measure of the tail of U , from both theoretical and practical
points of view: the superquantile is convex, positively homogeneous, mono-
tonic, translation invariant; see, e.g., the tutorial article [40].

2 Standard and Superquantile Machine Learning

Optimization is at the heart of machine learning, through the paradigm of em-
pirical risk minimization, which we briefly recall in Section 2.1. In Section 2.2,
we discuss superquantile learning, where the risk measure of the learning model
is the superquantile. The material of this section also serves as a gentle intro-
duction to the recent developments outlined in the next section.

2.1 Supervised Learning Review

We recall here the notation and basic notions of supervised learning; we refer
to standard textbooks [8] or [49] for more details. In the training phase of
supervised learning, we have access to n data-points: each data-point is a pair
(x, y), where x ∈ X is a feature vector and y ∈ Y is its corresponding target.
For instance, for a binary classification task, y is a Boolean encoding the
membership of the image x to one of the two classes. From this training data,
the aim is to learn a parameter w ∈W ⊂ Rd as “weights” of a given prediction
function z = ϕ(w, x) that produces, for an input x ∈ X, a prediction z ∈ Z of
the associated target y ∈ Y . Typical examples of prediction functions include
simple linear models ϕ(w, x) = w>x, polynomial models (as in Example 1
below), or artificial neural networks

ϕ(w, x) = w>s σ(· · ·σ(w>1 x)) , (5)

which are successive compositions of linear models wj and non-linear activa-
tions σ. The prediction error is then measured by a loss function ` : Y ×Z → R.
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Typical examples of loss functions include the least-squares loss (Y = R, Z= R)
or the logistic loss (Y = {−1, 1}, Z = R), defined respectively as

`(y, z) =
1

2
(y − z)2 , and, `(y, z) = log(1 + exp(−y z)) . (6)

Assuming1 that the training data are generated from a given distribution P
over X × Y , the “best" model parameter w solves the optimization problem

min
w∈W

[
R(w) = E(x,y)∼P [`(y, ϕ(w, x)]

]
. (7)

However, we can only access P via i.i.d. samples {(xi, yi)}1≤i≤n. So we consider
instead the empirical risk minimization approach, which solves the following
optimization problem, analogous to (7) but where the expectation is taken
over Pn, the empirical measure over the training examples:

min
w∈W

[
Rn(w) = E(x,y)∼Pn [`(y, ϕ(w, x)] =

1

n

n∑
i=1

`(yi, ϕ(w, xi)

]
. (8)

Under suitable conditions, we have that the minimizer w?n of (8) converges
almost surely in mean error to the best population error as n→∞, i.e.,

R(w?n) −→
n→∞

R(w?) almost surely. (9)

For concreteness, we instantiate this general framework with a simple regres-
sion task, which will also be used in illustrations in subsequent sections.

Example 1 (Least-squares regression) Consider a dataset D = (xi, yi)1≤i≤n ∈
(R× R)n generated by noisy observations of a quadratic function: we have

yi = w̄0 + w̄1 xi + w̄2 x
2
i + εi , where εi ∼ N (0, σ2) , (10)

for an unknown vector w̄ = (w̄0, w̄1, w̄2) ∈ R3 that we would like to approxi-
mate. In this case, (8) instantiates as the ordinary least-squares problem

min
w∈R3

E(x,y)∼Pn
[
(y − (w2x

2 + w1x+ w0))2
]
, (11)

with a quadratic model ϕ(w, ·) and the square loss.

1 When the assumption of the existence of an underlying distribution P is not realistic,
the usual approach is to still use the empirical risk minimization (8) from the given training
dataset Pn = {(xi, yi)}1≤i≤n.
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2.2 Superquantile Learning

The standard framework, recalled above, is currently challenged by important
domain applications [e.g., 2, 38], in which several of the standard assumptions
turn out to be limiting. Indeed classical supervised learning assumes that,
at training time, the examples (x1, y1), . . . , (xn, yn) are drawn i.i.d. from a
given distribution P , and that, at testing time, we face a new example x′,
also drawn from the same distribution P . However, recent failures of learning
systems when operating in unknown environments [21, 27] underscore the im-
portance of taking into account that we may not face the same distribution at
test/prediction time.

Distributionally robust learning aims to bolster the safety of learning systems
by enforcing robustness to heterogeneous data. This notion of robustness is
aligned with the one in robust optimization [4]; it is, however, different from
the notion of robustness in robust statistics [4, Sec. 12.6]. Here, we assume
that the dataset is preprocessed to remove outliers such that the extreme data
in the dataset is relevant to the learning process.

The superquantile can be used to build distributionally robust machine learn-
ing models, as studied recently in [9, 22, 25, 51] among others. From the dual
formulation (3), superquantiles are expected to produce models that perform
better in case of changes in underlying distributions, compared to models
trained using standard empirical risk minimization. Therefore, a natural ap-
proach to distributionally robust learning consists in replacing the expectation
in (7) by the superquantile (2). The resulting objective function is

min
w∈W

[
Sp(w) = [Sp](x,y)∼P

[
`(y, ϕ(w, x)

]]
,

as well as its empirical version analogous to (8)

min
w∈W

[
Spn(w) = [Sp](x,y)∼Pn

[
`(y, ϕ(w, x)

]]
. (12)

As we establish in the forthcoming Theorem 1, the convergence property (9)
also holds for Spn and Sp. We refer to [11, 48] for further discussions on sta-
tistical aspects of distributionally robust learning, and to [24, 28, 51] for su-
perquantile learning in particular.

In practice, superquantile has been shown experimentally to produce models
more robust to distribution shifts in various contexts; we refer to [9, 12, 20,
22, 25, 51]. For illustration, we include numerical experiments inspired from
the ones of [9] in the Appendix. We also include a short toy example here.

Example 2 (Superquantile regression) We illustrate the interest of superquan-
tile learning in presence of heterogeneous data, on a variant of the regression
task of Example 1. Consider a dataset gathering two different subgroups: 80%
of the points are generated by (10) and the remaining 20% are also generated
by (10) but with completely different parameters w̄. Then we can compare
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Fig. 1: Superquantile regression improves over worst-case datapoints. Left
figure: histograms of residuals ri = |yi − (w2x

2
i + w1xi + w0)| for model (11)

(in violet) and model (12) (in orange). Right table: xth perc. stands for x-th
percentile of final distribution of the residuals ri.

the usual approach using ordinary least-squares (11) with its superquantile
counterpart of the form (12) for p = 0.9.

We report on Figure 1 the distribution of residuals ri = |yi−(w2x
2
i+w1xi+w0)|

for models (11) and (12). The superquantile model (12) shows an improvement
of 90/95th quantiles of the distribution of residuals, which appears on his-
tograms as a shift of the upper tail to the left. This comes at the price of a
degraded performance on average, which appears on the figure as the shift of
the peak of residuals to the right.

We finish this section on superquantile learning with an asymptotic result
generalizing (9) for the superquantile. We present an elementary self-contained
proof: we follow the general approach (see e.g. the monograph [8]) that we
combine with the specific expression of the superquantile.

We start with the mathematical framework. The input-output space X ×Y is
equipped with a σ-algebra F , which is complete with respect to the probability
measure P . The almost sure convergence is proved with respect to a count-
able sequence of datapoints (x1, y1), . . ., the associated product σ-algebra and
product probability measure, which we denote P. The prediction space Z is
equipped with a norm ‖ · ‖. We consider the uniform pseudometric distϕ on
the parameter set W

distϕ(w,w′) = sup
x∈X
‖ϕ(w, x)− ϕ(w′, x)‖.

We assume W is bounded and we further make the following assumption on
its size with respect to distϕ.

Assumption 1 (On the "size" of W ). For any ε > 0, there exists a finite set
T ⊂W such that for every w ∈W , there exists a w′ ∈ T with distϕ(w,w′) ≤ ε.
Such a T is called a ε-cover of W , and the size of the smallest such a T is
denoted N(ε).
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For example for the set of d-dimensional linear functions ϕ(w, x) = w>x for
‖w‖2 ≤ 1. If we take the norm ‖z‖ = |z| on the real line Z = R, one can
prove that logN(W, distϕ, ε) ≤ C d log(1/ε) for some absolute constant C and
normalized data (see e.g., [56, Lemma 5.7]). The second standard assumption
that we consider is on the loss function `(·, ·).

Assumption 2 (On the loss). The map (x, y) 7→ `(y, ϕ(w, x)) is measurable
for every w ∈ W . The map w 7→ `(y, ϕ(w, x)) is continuous, and hence Borel
measurable, for each (x, y) ∈ X × Y . Furthermore, the loss is

– P -almost surely bounded, i.e., 0 ≤ `(y, ϕ(w, x)) ≤ B for each w ∈W ,

– M -Lipschitz in the second argument, i.e., |`(y, z) − `(y, z′)| ≤ M‖z − z′‖
for every z, z′ ∈ Z.

We have the following result generalizing (9).

Theorem 1. Let Assumptions 1 and 2 hold. Fix p ∈ (0, 1) and assume that
the minimizers of Sp and Spn are attained:

w? ∈ arg min
w∈W

Sp(w) and w?n ∈ arg min
w∈W

Spn(w).

Then, we have that Sp(w?n)→ Sp(w?) almost surely.

Proof Sketch. We give a sketch here and defer technical details to Appendix.

The key step in the proof is to show the uniform convergence

Spn(w)→ Sp(w) almost surely for all w ∈W .

Indeed, once we have this, the result immediately follows as

0 ≤ Sp(w?n)− Sp(w?) = Sp(w?n)− Spn(w?n) + Spn(w?n)− Spn(w?) + Spn(w?)− Sp(w?)
≤ 2 sup

w∈W
|Spn(w)− Sp(w)| → 0,

where we use Spn(w?n) ≤ Spn(w?) in the second inequality.

The proof of the uniform convergence follows the general approach (see e.g. [8])
adapted to variational expression of the superquantile (4). We introduce

S̄p(w, η) = η +
1

1− p
E(x,y)∼P [max(`(y, ϕ(w, x))− η, 0)] ,

to write
Sp(w) = min

η∈[0,B]
S̄p(w, η),

as well as analogous empirical version S̄pn(w). The proof now consists in two
steps, for a given ε > 0

– to construct a cover T ofW×[0,B] from a cover ofW (given by assumption);
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– to control the convergence over the points of T , more precisely to control
the probability of the event

En(ε) =
⋂

(w,η)∈T

{
S̄pn(w, η)− S̄p(w, η) ≤ ε/2

}
.

In fact, we show that
∞∑
n=1

P
(

sup
w∈W

|Spn(w)− Sp(w)| > ε
)
≤
∞∑
n=1

P
(
En(ε)

)
<∞,

from which we conclude the uniform convergence Spn(w)→ Sp(w) for all w ∈
W using the Borel-Cantelli Lemma.

3 Recent Applications of the Superquantile in Machine Learning

In this section, we give brief introductions to some of recent applications in
machine learning, involving the superquantile.

3.1 Conformity in Distributed Learning on Mobile Devices

The superquantile can be leveraged in distributed learning on mobile devices
to model conformity to the population [23]. Each mobile device contains the
data generated by a single user, and thus the data distribution across devices
is highly heterogeneous.

Concretely, suppose we have m training devices with respective data distribu-
tion qi and losses Li(w) = E(x,y)∼qi [`(y, ϕ(w, x))]. Federated learning [2] is a
distributed learning paradigm which aims to collaboratively learn a common
model across all devices without moving data between devices. The empirical
risk minimization approach to federated learning consists in assigning a weight
αi > 0 to each device to minimize the aggregate loss, which corresponds to an
expectation over a mixture pα of the training distributions qi:

L(w) =

m∑
i=1

αiLi(w) = E(x,y)∼pα [`(y, ϕ(w, x))] with
{
pα =

∑m
i=1 αiqi ,∑n

i=1 αi = 1 .

While minimizing such an objective might offer good performance for test
devices which conform to the population of training devices (i.e., distribution
q of the test device is close to pα), one can expect poor predictive performance
when q largely departs from pα. An alternative is to model the heterogeneity
of devices by considering data distribution pπ written as a convex combinaison
of the training distributions, but with weights πi different from αi:

pπ =

m∑
i=1

πiqi, with 0 ≤ πi ≤ 1 and
m∑
i=1

πi = 1.
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Fig. 2: Comparison of the three regressions for the toy federated learning
setting described in Example 3. We want commensurate performances among
users, which means graphically a curve at the same distance from the data-
points of the conforming users (in blue) and the non-conforming user (red).

In this context, [23] proposes to measure how close a test device’s distribution
pπ is to the training distribution pα by the so-called conformity level

conf(pπ) = min
1≤i≤m

αi/πi ∈ (0, 1].

We see that the closer the conformity level is to 1, the closer pπ is to pα, and
thus the device and its user tightly conform to the population trend. To learn
a robust model w performing well on reasonably non-conforming devices, [23]
proposes to find the best w for the set of devices with a conformity of at least
a given threshold c ∈ (0, 1); this leads to the optimization problem

min
w∈Rd

max
pπ∈P

E(x,y)∼pπ [`(y, ϕ(w, x))] , with P = {pπ : conf(pπ) ≥ c} . (13)

We observe now that the condition conf(pπ) ≥ c can be written πi/αi ≤ 1/c for
all i. Thus this constraint coincides, for the level p = 1− c, with the constraint
qi ≤ 1

m(1−p) in the dual formulation of the superquantile (3); see more precisely
the discrete version of the dual formulation (19). The extensive computational
experiments of [23, Sec. 4] show that such superquantile federated learning
has, as expected, superior performances for heterogeneous devices. Here we
provide a toy example illustrating the interest of the approach.

Example 3 (Federated regression) Consider a specific instance of Example 2
in a federated setting. We consider that 80% of the data corresponds to four
devices having the same data distribution following (10), while the remaining
20% corresponds to a fifth device having its own distribution. In this example,
the solution to federated regression problem with α being the uniform distri-
bution over the five devices coincides with the ordinary least squares model
on the whole dataset. Figure 2 shows this bivalent dataset: the blue points
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correspond to the data of the four first devices, and the red points correspond
to the last device. We would like to have a regression that captures worst-cases
for both behaviours. We take the conformity level of c = 1 − p = 1/5, using
the knowledge on how the dataset is constructed.

We plot on Figure 2 the regressions given by (11), (12), and the (13). We can
make three observations. First the standard model (11) (in purple) tends to
follow the trend imposed by the first four devices. Second, the superquan-
tile model (12) (in orange) has better regression on worst-case data, irre-
spective of the group of the data point. Finally the federated superquantile
model (13) finds, in contrast, a compromise between the two trends. Thus,
federated superquantile regression better captures the (red) data points of the
non-conforming user.

3.2 Fairness-aware Machine Learning

The superquantile naturally appears when considering the notion of fairness
in machine learning (see e.g., [17, 19]) as presented below.

Fairness in machine learning is studied with reference to a sensitive attribute,
such as race or gender; see e.g., [19]. Suppose that we have a population that
can be partitioned unambiguously between G subgroups with respect to this
attribute. We denote L(w) = (L1(w), . . . , LG(w)) the vector of losses on each
of the subgroups of the training set. Fairness in such situation would require
independence between the sensible attribute and either predicted value or av-
eraged losses per group Li(w). An ideal group fairness of the model w would
then imply that L1(w) = · · · = Ln(w) [57, Def. 1]; but such a model could
be no better than random guessing in the worst case. So [57] considers ap-
proximate group fairness and introduces the notion of fairness risk measures.
As explained in detail in Section 4 and supplementary material of [57], key
properties for fairness risk measures includes convexity, positively homogene-
ity and monotonicity: the superquantile is thus a prominent example of such a
measure. Experiments in [57, Sec. 7] show that superquantile indeed allows for
a good balance between predictive accuracy and fairness violation. For com-
pleteness, we provide here a simple illustration in the context of Example 3.

Example 4 (Fair regression) Let us come back to the toy example of Exam-
ple 3. We look at it with the perspective of fairness between the predominant
group (the four blue users) and the minority group (the fifth “red” user). Ta-
ble 2 compares (i) the average performance over the predominant group and
(ii) the average performance on the minority group. We observe that the dif-
ference between these performance is minimal for the user-level superquantile
model provided by (13), achieving better approximate group fairness.
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Model L1(w) (blue subgr.) L2(w) (red subgr.)

least-square (11) 4.59 17.76
superquantile (12) 9.88 13.62
federated superqu. (13) 10.87 11.46

Table 2: Average performances of each model over both subgroups.

3.3 Adversarial Classification

The superquantile also appears in generalized classification tasks when study-
ing robustness to perturbations of data distributions [16].

In binary classification, we have Y = {−1,+1} and the prediction function
ϕ(w, x) correctly classifies a data point (x, y) if

y ϕ(w, x) > 0.

For an underlying data distribution P , we may want to choose w so as either
to minimize the probability P(x,y)∼P

(
y ϕ(w, x) ≤ 0

)
of encountering an error,

or to control the distance d(w, (x̄, ȳ)) to misclassification of a data point (x̄, ȳ):

d(w, (x̄, ȳ)) = inf
x

{
‖x− x̄‖2 : ȳ ϕ(w, x) ≤ 0

}
.

In this context, robustness against perturbations of the data distribution P
can be guaranteed by minimizing the worst-case error probability over a ball
(e.g., for Wasserstein distance dW) around P

min
w

sup
Q: dW(Q,P )≤ε

P(x,y)∼Q
(
y ϕ(w, x) ≤ 0

)
. (14)

Interestingly, optimal solutions of this problem coincide with those solving:

min
w

[Sp](x̄,ȳ)∼P
(
− d(w, (x̄, ȳ))

)
, (15)

for a well-chosen p; see [16, Theorem 2.6]. When the distance function d has a
computable closed form, formulation (15) is simpler to handle than (14). We
refer to [16] for results in the general case and for related literature.

3.4 Risk-Sensitive Reinforcement Learning

In a framework different from the supervised learning ones considered so far,
the superquantile plays a role in risk-sensitive reinforcement learning. Rein-
forcement learning methods attempt to find decision rules to minimize a cu-
mulative cost [52] in a sequential decision-making setting.

Concretely, a learning agent acts in a Markov decision process using a policy π
which maps a state to a distribution over an action space. The agent’s aim is
to minimize the total cost c(τ) =

∑n
i=1 c(si) of a trajectory τ = (s1, . . . , sn)

of states taken by the agent while following the policy π. Letting Γ (π) denote
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the induced distribution over trajectories of length n under policy π, standard
reinforcement learning methods minimize the expected cumulative cost as

min
w

Eτ∼Γ (πw)[c(τ)] ,

where w ∈ Rd parameterizes the policy πw. The so-called policy gradient meth-
ods aim to solve this by first-order optimization methods where the gradient
of the objective is estimated by Monte Carlo simulations [53].

However, in safety-critical applications, we are interested in accounting for
unlikely events with high cost [18]. In particular, [30] considers sensitivity to
risky high-cost trajectories by minimizing the superquantile counterpart

min
w

[Sp]τ∼Γ (πw)[c(τ)] . (16)

This risk-sensitive reinforcement learning setting thus leads to similar su-
perquantile problems than in the supervised learning setting. We refer to [54]
on how to adapt policy gradient methods to estimate the gradient of the ob-
jective with respect to the parameters.

4 Efficient (Sub)differential Calculus

The applications sketched in the previous section reveal optimization problems
with objective functions2 written as the composition of a superquantile and a
general loss function

f(w) = Sp(L(w)). (17)

For example, (12) involves L : Rd → Rn defined component-wise for each data
point by Li(w) = `(yi, ϕ(w, xi)); similar expressions follow from (13), (15)
and (16). We notice first that L is usually non-convex (e.g., with ϕ as (5)) but
smooth (e.g., with ` as (6)).

In this section, we provide easy-to-implement expressions of subgradients of
superquantile-based functions (17), in Section 4.2, and of gradients of smoothed
approximations of them in Section 4.3. Finally, in Section 4.4, we compare the
proposed smoothing with others considered in the literature (e.g., [7, 26]).
Computing the (sub)gradients would be the first step toward using first-order
optimization algorithms for solving superquantile problems. Though simple,
this idea of using first-order methods is not widely used for such problems;
among the few exceptions, we mention the PhD thesis [29] using subgradient
algorithms (in a special case) and our conference paper [22] presenting a tool-
box for using first-order methods in superquantile learning. The developments
of this section detail and extend those of [22, Sec. 3].

2 In coherence with the previous section and to comply with common notation in machine
learning, we stick to the notation w for the variable of the functions.
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Fig. 3: Illustration of the integral expression of the superquantile. Cumulative
distribution function (on the left) and quantile function (on the right) are
inverse one of the other. Sp(U) is obtained by averaging the quantiles greater
than p (red section on right graph).

4.1 Computing the Superquantile

For the practical developments of this section, we consider a data-driven setting
where the random variable U takes equiprobable values u1, . . . , un

3. In this
setting, the three representations of superquantile recalled in Section 1.2 takes
explicit forms that have special interest from a computational perspective.

– Integral representation. By splitting the integral, (2) can be written as

Sp(U) =
1

n(1−p)
∑
i∈I>

ui +
δ

1−p
Qp(U) with I>= {i : ui>Qp(U)}. (18)

This expression involves the distance from p to the next discontinuity point
of the quantile function p′ 7→ Qp′(U) (see Figure 3):

δ = FU (Qp(U))− p =
1

n
(n− |I>|)− p.

Thus (18) gives an efficient way to compute superquantiles from the fol-
lowing three step procedure: (a) compute the p-quantile with the special-
ized algorithm (called quickfind) of complexity O(n); (b) select all values
greater or equal than the quantile; (c) average values along (18).

– Dual representation. The expression (3) simplifies to

Sp(U) = max
q∈∆p

q>u with ∆p=

{
q ∈ Rn+ :

n∑
i=1

qi = 1, qi ≤
1

n(1− p)

}
. (19)

3 In the sequel, we make a slight abuse of notation by not distinguishing between the
random variable U and the vector of its equiprobable realizations u = (u1, . . . , un). Thus
we consider the superquantile function Sp : Rn → R as a function of u ∈ Rn, and we study
the differentiability properties of compositions with Sp.
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Fig. 4: Illustration of the dual expression of the superquantile. Sp is the support
function of the red polytope. The red point represents the uniform distribution.

In words, the superquantile is the support function of the intersection of
the simplex with a box (see Figure 4). This problem also corresponds to a
classical optimization problem, called fractional knapsack problem, which
is solved, after sorting the ui’s, by a simple greedy strategy of the associated
qi’s [10]. For our purposes, this expression of superquantile, as a direct max,
is useful when applying dual smoothing techniques; see Section 4.3.

– Variational representation. The expression (4) writes

Sp(U) = inf
η∈R

{
η +

1

n(1− p)

n∑
i=1

max(ui − η, 0)

}
. (20)

This expression is often used in solving approaches for superquantile op-
timization; see e.g., the progressive hedging for risk-averse multistage pro-
gramming of [39]. Here, this expression will provide a nice interpretation
of the infimal convolution smoothing (Corollary 6).

4.2 Subdifferentials

In this section, we provide explicit and implementable expressions of the sub-
differential of superquantile-based functions. Expressions of (convex) subdif-
ferential of superquantile are well-known in general settings; see e.g., [46] for a
thorough study. Here we study non-convex subdifferentials and derive concrete
expressions in the data-driven context; we give direct proofs as applications of
basic definitions and properties of nonsmooth analysis.

We start by recalling the standard notions of subgradients for nonsmooth
functions (in finite dimension), following the terminology of [45]. For a function
ψ : Rd → R ∪ {+∞}, the regular (or Fréchet) subdifferential of ψ at w̄ (such
that ψ(w̄) < +∞) is defined by

∂Rψ(w̄) =
{
s ∈ Rd : ψ(w) ≥ ψ(w̄) + s>(w − w̄) + o(‖w − w̄‖)

}
.
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The regular subdifferential thus corresponds to the set of gradients of smooth
functions that are below ψ and coincide with it at w̄. The limiting subdiffer-
ential is the set of all limits produced by regular subgradients

∂Lψ(w̄) = lim sup
w→w̄,ψ(w)→ψ(w̄)

∂Rψ(w).

These notions generalize (sub)gradients of both smooth functions and convex
functions: for these functions indeed, the two subdifferentials coincide, and
they reduce to {∇ψ(w̄)} when ψ is smooth and to the standard subdifferential
from convex analysis when ψ is convex.

For the function (17), which is the composition of a convex function and a
continuously differentiable function, we get from basic chain rules that the
two subdifferentials coincide; we simply denote it by ∂f(w). Moreover the
dual representation (19) expressing Sp as a support function allows to obtain
readily an expression of the subdifferential of ∂Sp and, as a result, of the one
of f . We formalize all this in the following proposition.

Proposition 2 (Explicit subdifferential of superquantile-based functions).
Consider the superquantile-based function (17) with L continuously differen-
tiable. We have

∂f(w̄) =
(
∂Lf(w̄) = ∂Rf(w̄) =

)
∇L(w̄)∗∂ Sp(L(w̄)) (21)

where ∇L(w̄)∗ is the adjoint of the Jacobian of L at w̄ and ∂ Sp(L(w̄)) the
(convex) subdifferential of Sp taken at L(w̄). Moreover, for w ∈ Rd, compute
L(w) ∈ Rn and Qp(L(w)) ∈ R. Consider I> the set of indices such that
Li(w) > Qp(L(w)) and I= the set of indices such that Li(w) = Qp(L(w)).
Then the subdifferential of f at w can be written with the gradients ∇Li(w)
for i ∈ I> ∪ I=, as follows

∂f(w) =
1

n(1− p)
∑
i∈I>

∇Li(w) +
δ

1− p
conv {∇Li(w) : i ∈ I=} .

Proof. We apply the chain rule of [45, 10.6] to the composition Sp ◦L: we have
that Sp is convex with full domain, which implies that the two subdifferentials4
of f coincide (i.e., f is regular in the terminology of [45]) and we have (21).

Since Sp is the support function of the set ∆p, standard subdifferential calcu-
lus [15, Cor. 4.4.4] gives that ∂Sp(L(w)) is the set of optimal solutions of (19)

4 Remark on the Clarke subdifferential: As another by-product of the chain rule [45,
10.6], the set of horizon subgradients of f is reduced to 0 since so is the one of Sp (convex
and defined on Rn). As a consequence, the Clarke subdifferential is the convex hull of the
limiting subdifferential [45, 8.49]. Thus we have, in our case, that the three subdifferentials
(regular, limiting and Clarke) coincide.
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with u = L(w). Knowing I> and I=, the so-called fractional knapsack prob-
lem (19) can be solved by the simple greedy strategy [10] of taking the largest
qi for i ∈ I> and completing to 1 with the qi for i ∈ I=. Thus

q solution of (19) ⇐⇒


qi = 1

n(1−p) if i ∈ I>
0 ≤ qi ≤ 1

n(1−p) if i ∈ I= s.t.
∑
i∈I= qi = δ

1−p
qi = 0 otherwise.

By (21), this gives:

∂f(w) =
1

n(1− p)
∑
i∈I>

∇Li(w) +

{∑
i∈I=

qi∇Li(w), s.t.
{

0 ≤ qi ∀i ∈ I=∑
i∈I= qi = δ

1−p

}
.

Finally, introducing weights αi = qi(1−p)
δ for i ∈ I=, the right-hand term can be

written as the convex hull of∇Li(w) for i ∈ I=, which gives the expression.

We observe that the expression of ∂f(w) does not involve the gradients of all
the Li’s, but only of those associated to the largest values. We also see that f
is differentiable at w if and only if I= is reduced to a singleton. The objective
function is not differentiable in general, which poses a problem for a direct
application of machine-learning gradient-based algorithms.

4.3 Smoothing by Infimal Convolution

In this section, we study a smoothing of nonsmooth superquantile-based func-
tions (17). We propose to use the infimal convolution smoothing of [33]; the
comparison to other smoothing approaches is postponed to the next section.

We follow the guidelines of [3] : we smooth only the superquantile Sp rather
than the whole function f . Thus we consider

fν(w) = Sνp(L(w)) for Sνp a smooth approximation of Sp. (22)

Regularizing the dual representation (19) of superquantile, we consider the
function, parameterized by the smoothing parameter ν,

Sνp(u) = max
q∈∆p

{
q>u− νD(q)

}
, (23)

for a given strongly convex function D. The following proposition establishes
that the resulting function fν as (22) is a smooth approximation of f , as a
direct application of e.g., [3, Theorem 4.1, Lemma 4.2], or [33, Theorem 1].

Proposition 3 (Smoothed approximation). The function fν defined by (22)
(with Sνp in (23)) provides a global approximation of f , i.e.,

fν(w) ≤ f(w) ≤ fν(w) +
ν

2
for all w ∈ Rd.
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Moreover Sνp is differentiable, with ∇Sνp(u) being the argmax of (23), unique by
strong convexity of D. When L is differentiable, fν is differentiable as well, with

∇fν(w) = ∇L(w)∗∇Sνp(L(w)). (24)

In our quest for simple and implementable expressions, we study in the rest
of this section the case of separable strongly functions of the form:

D(q) =

n∑
i=1

d(qi) given a strongly convex function d : [0, 1]→ R. (25)

We provide in Corollary 5 a general scheme to compute the gradient with
explicit expressions in Examples 5 and 6 for special choices of d. Finally we
discuss the role of the smoothing parameter ν in a numerical illustration.

We start with a lemma gathering the nice duality properties of (23). A one-
dimensional convex function plays a special role: it is the convex conjugate of
the sum of νd and the indicator of the segment [0, 1/n(1− p)]

gν(s) =
(
νd+ i[0, 1

n(1−p) ]

)∗
(s) = max

0≤t≤ 1
n(1−p)

{s t− ν d(t)} . (26)

Since d is strongly convex, standard (one-dimensional) convex analysis gives
(see e.g., [15, Prop.I.6.2.2]) that gν is continuously differentiable with deriva-
tive g′ν(s) being the (unique) t achieving the above max. Simple calculus yields

g′ν(s) =


0 if s ≤ ν d′+(0)
1

n(1−p) if s ≥ ν d′−(1/(n(1− p)))
(d∗)′

(
s
ν

)
otherwise.

(27)

where d′+(0) ∈ [−∞,+∞) and d′−(1/(n(1− p))) ∈ [−∞,+∞) are respectively
the right-derivative of d at 0 and the left-derivative of d at 1/(n(1− p)). Note
finally that gν ′ is a non-decreasing function.

Lemma 4 (Duality). The dual problem of the convex problem (23) (with a sep-
arable D as in (25)) can be expressed as the (smooth convex) one-dimensional
problem:

min
η

θ(η) = η +

n∑
i=1

gν(ui − η). (28)

Moreover, there is no duality gap between (23) and (28). There exists a primal-
dual solution (q?ν , η

?) and the unique primal solution can be written q?ν =
(g′ν(ui − η?))i=1,...,n with the help of (27).

Proof. This lemma could be proved by applying a sequence of results from
abstract Lagrangian duality [15, Chap.XII]. Instead, we provide a simple proof
from the direct calculus developed so far. Consider the dualization of the
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constraint
∑n
i=1 qi − 1 = 0 in ∆p. For a primal variable q ∈ Bp =

[
0, 1

n(1−p)

]n
and a dual variable η ∈ R, we write the Lagrangian

L(q, η) =

n∑
i=1

qiui − νdi(qi)− η
( n∑
i=1

qi − 1
)

= η +

n∑
i=1

qi(ui − η)− νdi(qi) ,

and the associated dual function

θ(η) = max
q∈Bp

L(q, η) = η +

n∑
i=1

max
0≤qi≤ 1

n(1−p)

{qi(ui − η)− ν di(qi)} ,

which gives the expression of the dual function (28) from (26). Note for later
that we have, by construction, the so-called weak duality inequality

θ(η) ≥ L(q, η) =

n∑
i=1

qiui − νdi(qi) for all η and all feasible q ∈ ∆p. (29)

Now recall that gν in (26) is differentiable and so is the dual function with

θ′(η) = 1−
n∑
i=1

g′ν(ui − η) . (30)

The above expression also shows that

lim
η→+∞

θ′(η) = 1 and lim
η→−∞

θ′(η) = 1−
n∑
i=1

1

n(1− p)
=
−p

1− p
.

By continuity of g′ν and θ′, this implies that there exists η? such that θ′(η?) = 0,
i.e., there exists a dual solution η?. On the primal side, the compactness of Bp
and strong convexity of d gives existence and uniqueness of the primal solution,
denoted q?ν . Observe now that (30) means that the vector (g′ν(ui−η?))i=1,...,n,
which lies in Bp by construction, is in fact primal feasible. From (29) and
uniqueness of the primal solution, this implies that q?ν = (g′ν(ui − η?))i=1,...,n

and that there is no duality gap.

From Lemma 4, we get an almost explicit expressions of values and gradients
of the smooth approximation fν .

Corollary 5 (Oracle for smooth approximation). Consider fν defined by (22)
with L differentiable. With η? an optimal solution of (28) with ui = Li(w),

fν(w) = η? +

n∑
i=1

gν(Li(w)− η?) ,

∇fν(w) =

n∑
i=1

g′ν(Li(w)− η?)∇Li(w)

where gν and g′ν are given by (26) and (27).
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Proof. The no-gap result of Lemma 4 gives that Sνp(u) is equal to the optimal
value of (28). This gives directly the above expression of fν(w) = Sνp(L(w))
with η? an optimal solution of (28) with ui = Li(w). Regarding the expres-
sion of the gradient, Proposition 3 states that ∇Sνp(u) is the optimal solution
of (23), and Lemma 4 expresses it as (g′ν(ui − η?))i=1,...,n. We then get the
expression of ∇fν(w) from (24).

Thus the computation of the first-order oracle of fν boils down to solving the
one-dimensional convex problem (28) with ui = Li(w). This easy task can be
done in general by bisection or higher-order schemes. Here Lemma 4 allows
us to make an additional simplification with an initial interval tightening. We
can indeed shrink the segment where to find η? to two consecutive points in

N =

{
ui − ν d′+(0), ui − ν d′−

( 1

(n(1− p)

)
i = 1, . . . , n

}
which is a set of special points regarding the structure of the dual function
(recall (27) and (28)). Denoting η and η̄, defined respectively as the largest
point in N such that θ′(η) ≤ 0 and the smallest point in N such that θ′(η̄) ≥ 0,
we get η? by testing three cases:

– if θ′(η) = 0, take η? = η ; if θ′(η̄) = 0, take η? = η̄ ;
– otherwise, compute η? in the small interval [η, η̄].

The initial interval tightening thus boils down to having sorted points in N ,
which is obtained directly from sorting the given data.

Finally we emphasize that we can sometimes go one step further ahead and
obtain explicit expressions of η? and thus, readily implementable expressions
of∇fν(w). In the next two examples, we illustrate this for two cases of interest,
when we smooth the superquantile by a divergence to the uniform probability
(which is at the center of ∆p; recall Figure 4). In particular the smoothing de-
tailed in the forthcoming Example 5 was used in the numerical illustrations of
Examples 2, 3, and 4 (where the resulting smoothed superquantile optimiza-
tion problems were solved by L-BFGS).

Example 5 (Euclidean smoothing) We suggest to smooth the superquantile
with the Euclidean distance to the uniform distribution

D(q) =
1

2
‖q − q̄‖2 with q̄ =

(
1

n
, . . . ,

1

n

)
,

which consists in taking in (25)

d(t) =
1

2

(
t− 1

n

)2

.

In this case, elementary calculus gives

d′−(0) = − 1

n
, d′+

(
1

n(1− p)

)
=

p

n(1− p)
, and (d∗)′

(
t

ν

)
=
t

ν
+

1

n
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so that we get from (27) the following expression

qi = g′ν(ui − η) =


0 if η ≥ ui + ν

n
1

n(1−p) if η ≤ ui − ν
n

p
1−p

ui−η
ν + 1

n otherwise,
(31)

for the entries of the solution of (23). We also have that θ′ is piecewise linear
in this case and that

N =

{
xi +

ν

n
, xi −

ν

n

p

1− p
i = 1, . . . , n

}
.

Therefore from η and η̄ in N , finding η? in the interval [η, η̄] simply reduces
to interpolating linearly as

η? = η −
θ′(η)(η̄ − η)

θ′(η̄)− θ′(η)
.

We can apply Corollary 5 to get an efficiently implemented expression of the
gradient. Note that the obtained expression of ∇fν(w) involves only the gra-
dients ∇Li(w) for largest values of Li(w) (comparable to the expression of
∂L(w) in Proposition 2).

Example 6 (KL smoothing) We use here the Kullback-Leibler divergence to
the uniform probability

d(q) =

n∑
i=1

qi log(qi/q̄i) with q̄ =

(
1

n
, . . . ,

1

n

)
.

which consists in taking d(t) = t log(t) in (25). Elementary calculus then gives

d′+(0) = −∞, d′−

(
1

n(1− p)

)
= 1−log(n(1−p)), and (d∗)′

(
t

ν

)
= exp

(
t

ν
− 1

)
which in turn yields

g′ν(ui − η) =

{ 1
n(1−p) if η ≤ ui + ν (log(n(1− p))− 1)

exp (ui−ην − 1) otherwise

N = {ui + ν (log(n(1− p))− 1) i = 1, . . . , n} .

On the interval [η, η̄], we have that

θ′(η) = 1−
∑
i∈I

1

n(1− p)
−
∑
i/∈I

exp

(
ui − η
ν
− 1

)
with I = {i, ui + ν (log(n(1− p))− 1) ≤ η} the set of indices of points in N
smaller than η. This yields

η? = ν log

(∑
i/∈I exp(ui/ν − 1)

1− |I|/
(
n(1− p)

) ) .
We can then apply Corollary 5 to get the smoothed gradient.
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Fig. 5: Impact of the smoothing parameter ν on the relative weighing between
data points. Left: empirical cumulative distribution of n = 500 points sampled
from a standard Gaussian distribution.Right: distribution of weights, i.e., the
optimal solution of (23) for p = 0.5, with respect to sorted data points (i.e.,
value at abscissa t is the weight attached to the t-quantile). Different colours
correspond to different values of ν.

We conclude this section on the infimal-smoothing of the superquantile with
two remarks illustrating the impact of the smoothing parameter ν.
Remark 1 (Impact of the smoothing parameter on the weights) We illustrate
the impact of the smoothing parameter ν on the relative weights given to
the data. We consider the Euclidean smoothing of Example 5 with p = 0.5;
we sample n = 500 points from a Gaussian distribution; and we compute,
for different values of ν, the distribution of weights qi of (31), solutions to
smoothed problem (23). The right-hand side of Figure 5 displays the impact
of ν of the obtained weights. In particular, we note that as ν grows, the distri-
bution qi tends to spread uniformly over all data-points, so that the smoothed
superquantile acts like the expectation. In contrast, when ν is close to 0, the
distribution approximates the uniform distribition over the interval [p, 1], so
that the smoothed superquantile acts like the superquantile. This approxima-
tion is further discussed in the next remark.

Remark 2 (Impact of the smoothing parameter on the approximation) We il-
lustrate here the impact of the smoothing parameter ν on the approximation
of the superquantile by its smoothed variant (Proposition 3). To do so, we
fix a vector w̄ and we observe the values of smoothed approximations of a
superquantile-based function for different values of ν. More precisely, we con-
sider the logistic regression problem used in Appendix B; we use the quadratic
smoothing of Example 5 with ν = 0.1; and we solve the problem by L-BFGS
to get the reference point w̄. Then we compute, at this point, the values of:

– the underlying superquantile-based objective (12) which corresponds to the
case ν = 0;



Superquantiles at Work 23

– the smoothed approximations (which corresponds to (12) with Sνp replacing
Sp) for a sequence of ν evenly spread on a log scale;

– the usual empirical risk minimization objective (8), which corresponds to
the case ν = +∞. Indeed, in this regime ν → +∞, the impact of the
quadratic penalization term (q − q̄) increases so that the solution of (23)
eventually becomes the uniform distribution q̄, in which case Sνp coincides
with the expectation.

We observe on Figure 6 what is expected: for small values of ν, the difference
between the superquantile-based objective and its smooth approximations van-
ishes; for large values of ν, the smoothed superquantile loss tends to the average
loss and does not approximate the nonsmooth superquantile loss well.

A key benefit of smoothing the superquantile is to leverage efficient smooth
optimization algorithms, such as L-BFGS, for superquantile learning. When
ν is too small, the problem is almost non-smooth, which leads to numerical
issues with convergence (on this instance, L-BGFS fails to converge when ν
too small or when used with the nonsmooth oracle of Proposition 2 due to
a line search failure). When ν is too large, the smoothed superquantile gets
close to the expectation and the interest of using a superquantile approach
disappears. This illustrates the interest of having a moderate ν for superquan-
tile learning, where the smoothed objective is an reasonable approximation of
the nonsmooth superquantile, while still being smooth enough to leverage fast
optimization algorithms.
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Fig. 6: Impact of the smoothing parameter ν when solving a superquantile
logistic regression on a classical dataset (Australian Credit dataset).
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4.4 Comparison to Other Smoothing Schemes

We compare the proposed infimal convolution smoothing of the superquan-
tile (23) to other possible smoothing schemes. Classical smoothing techniques
are based either on convolution or infimal convolution. For superquantile, one
could either smooth the dual representation (19) or the variational representa-
tion (20). Together, this yields four natural ways to smooth the superquantile.

We first formalize the equivalence between the two infimal convolution smooth-
ings: indeed, smoothing the dual representation considered in the preceding
section corresponds to a smoothing of max{·, 0} in the variational formulation.

Corollary 6 (Equivalence of smoothings with infimal convolution). With the
notation of Section 4.3, the infimal convolution smoothing of Sp with a sep-
arable strongly convex function (25) is equivalent to the infimal convolution
smoothing of the positive part max{·, 0} as

mν(η) = max
0≤t≤1

{
η t− ν d̃(t)

}
with d̃(t) = n(1− p)d

(
t

n(1− p)

)
. (32)

More precisely, we have the following equality (to be compared with (20))

Sνp(u) = min
η

{
η +

1

n(1− p)

n∑
i=1

mν(ui − η)

}
.

Proof. A direct change of variable in (26) gives gν(ui−η) = 1
n(1−p)mν(ui−η).

The proof is direct from the expression of the dual problem (28) and the no-gap
result stated in Lemma 4.

Next, we show an equivalence between the smoothing by infimal convolu-
tion (32), and by convolution, as considered in [7, 26]. Given a continuous
probability density ρ : R→ R+, (such that

∫∞
−∞ |s|ρ(s)ds is finite) the smooth-

ing by convolution of the function max{·, 0} with smoothing parameter ν > 0
is defined by5

m̄ν(η) =
1

ν

∫ ∞
−∞

max{η − s, 0}ρ
(
s
ν

)
ds =

1

ν

∫ η

−∞
(η − s)ρ

(
s
ν

)
ds . (33)

The function m̄ν is convex and smooth, with derivative

m̄′ν(η) =
1

ν

∫ η

−∞
ρ
(
s
ν

)
ds . (34)

5 Applied to max{x, ·}, the general smoothing by convolution as defined in (33) coincides
with the double integral representation used in [7, 26]. Indeed, integrating (34) yields

m̄ν(η) = 1
ν

∫ η

−∞

∫ η′

−∞
ρ
(
s
ν

)
dsdη′ .
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The next proposition, relating this smoothing to the previous one, involves
Qt(ρ) the quantile function of a random variable with density ρ.

Proposition 7 (Equivalence of convolution/inf-convolution smoothings).
With the above notation, the convolution smoothing m̄ν of (33) for ν = 1 can
be written as the infimal-convolution smoothing (to be compared with (32))

m̄1(η) = max
0≤t≤1

{
η t− d̄(t)

}
where d̄(t) = tQt(ρ)− m̄1(Qt(ρ)). (35)

Conversely, the infimal convolution smoothing mν of (32) for ν = 1 can be
written as the convolution smoothing (to be compared with (33))

m1(η) = lim
s→−∞

m1(s) +

∫ η

−∞
(η − s)ρ̃(s)ds where ρ̃(s) = m′′1(s) a.e. (36)

Proof. For the first part, we consider the convex conjugate of m̄1

m̄∗1(t) = sup
η∈R
{η t− m̄1(η)} .

If t /∈ [0, 1], the supremum is +∞ since |m̄1(η) − max{η, 0}| is bounded by
an absolute constant. For t ∈ [0, 1], the concave function η 7→ ηt − m̄1(η) is
maximized at η? if and only if it satisfies the first-order optimality condition

t = m̄′1(η?) =

∫ η?

−∞
ρ(s)ds.

Since the latter is the cumulative distribution function, η? = Qt(ρ) is the
corresponding quantile function (well-defined since ρ is continuous). This yields

m̄∗1 = d̄+ i[0,1], (37)

which in turn gives (35). Finally to establish the strong convexity of d̄, we use
again (37) together with the smoothness of m̄1. Thus m̄1 corresponds to the
infimal-convolution smoothing with d̄.

For the second part, we start by noting that since m′1 is Lipschitz, m′′1 exists
almost everywhere, and ρ̃ is well-defined. Since m1 is convex, it also holds that
m′′1(s) ≥ 0, and then that we have the normalization∫ ∞

−∞
ρ̃(s)ds =

∫ ∞
−∞

m̃′′1(s)ds = lim
η→∞

m′1(η)− lim
η→−∞

m′1(η) = 1− 0 = 1 ,

where we use m′(η) is the (unique) optimal solution of (32). Then the proof
follows from the next two claims.

Claim 1: m1 admits a limit at −∞. Convexity of m1 gives that m′1 is non-
decreasing. Since lims→−∞m′1(s) = 0, we get that m′1 is non-negative. Thus,
m1 is non-decreasing and, since it is bounded from below, this implies that
m1 admits a limit at −∞ (that we denote m1(−∞)).
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Claim 2: lims→−∞ sm′1(s) = 0. For a given s, we write:

s m′1(2s) ≤
∫ s

2s

m′1(t)dt = m1(s)−m1(2s),

where the inequality comes from the fact that m′1 is non-decreasing. Using
that m1 admits a limit at −∞ (Claim 1), we then get Claim 2.

Finally, we can conclude the proof with integration by parts:

m1(η) = m1(−∞) +

∫ η

−∞
m′1(s)ds

= m1(−∞) + [(s− η)m′1(s)]η−∞ +

∫ η

−∞
(η − s)ρ̃(s)ds

= m1(−∞) +

∫ η

−∞
(η − s)ρ̃(s)ds.

This establishes (36) and ends the proof.

Finally, we mention the smoothing of the dual representation (19) using con-
volution, which would write:

S̄νp (u) =
1

ν

∫
Rn
Sp(u− z)ρ

(
z
ν

)
dz = EZ∼ρ[Sp(u− νZ)] ,

for the density ρ : Rn → R and the parameter ν > 0. We do not consider
this smoothing approach because it suffers from two drawbacks in view of
practical implementation. First, it usually cannot be computed in closed form,
unlike the other smoothing approaches considered here. Second, the Lipschitz
constant of the gradient (appearing in condition numbers, constant scalings,
and rates of convergence of first-order methods [32]) scales badly: as O(

√
n/ν)

for the Lipschitz constant of ∇S̄νp [31, Lemma 2], as opposed to the dimension-
independent O(1/ν) for the one of ∇Sνp [33, Theorem 1].

5 Conclusion

In this paper, we have developed two different aspects of the superquantile,
a famous risk measure studied and popularized by R.T.Rockafellar and his
co-authors. First, we have reviewed recent applications of superquantiles in
machine learning, keeping our discussion at a high-level, omitting details, and
just providing basic illustrations and pointers to recent research. Second, we
have provided explicit expressions of (sub)gradients of (smoothed) superquan-
tiles; here, in contrast, we go down to the details of computation in order to get
efficient first-order oracles for superquantile-based functions. In particular, we
have proved that smoothed oracles have essentially the same computational
complexity as for the corresponding superquantile functions (Corollary 5 and
following discussions).
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These fast oracles are implemented in the toolbox6 spqr build on top of the
popular Python machine learning library scikit-learn [36]. This toolbox pro-
vides an interface for using standard first-order algorithms; we refer to our
numerical experiments of [22] and [23] (see also Appendix B). From this ex-
perimental experience, we advocate the use of quasi-Newton methods (and in
particular L-BGFS; see e.g., [34]) that gives good performances in practice.
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A Proof of Theorem 1

In this appendix, we provide a complete proof of Theorem 1. For classical results in this
spirit, we refer to the monograph [8]. For discussions on statistical aspects of statistical
learning, we refer to e.g., [11, 24, 28].

The key step in the proof of Theorem 1 is to show the uniform convergence

Spn(w)→ Sp(w) almost surely for all w ∈W . (38)

Indeed, once we have this, the result immediately follows as

0 ≤ Sp(w?n)− Sp(w?) = Sp(w?n)− Spn(w?n) + Spn(w?n)− Spn(w?) + Spn(w?)− Sp(w?)

≤ 2 sup
w∈W

|Spn(w)− Sp(w)| → 0,

where we use Spn(w?n) ≤ Spn(w?) in the second inequality.

In order to prove (38), we use the variational expression of the superquantile (4). We define

S̄p(w, η) = η +
1

1− p
E(x,y)∼P [max(`(y, ϕ(w, x))− η, 0)] ,
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so that, using that the loss is bounded by B, we can write

Sp(w) = min
η∈[0,B]

S̄p(w, η).

We define the analogous empirical version S̄pn(w, η) so that Spn(w) = minη∈[0,B] S̄
p
n(w, η).

Note that S̄pn(w, η) is measurable for each fixed (w, η) and Spn(w) is measurable for each
fixed w.

Claim 1: Under Assumption 2, the random variable

δn(w, η) := S̄pn(w, η)− S̄p(w, η)

has mean zero, lies almost surely in [−B,B], and satisfies

|δn(w, η)− δn(w′, η′)| ≤ 2M/(1− p) distϕ(w,w′) + 2(1 + 1/(1− p))|η − η′| . (39)

Note first that E[S̄pn(w, η)] = S̄p(w, η) and that the boundedness of δn comes from the
boundedness of the loss function. The Lipschitzness of δn also comes from the one of the loss
function, as follows. Using that max{·, 0} is 1-Lipschitz and that the loss ` is M -Lipschitz,
we get

|max{`(y, ϕ(w, x))− η, 0}−max{`(y, ϕ(w′, x))− η′, 0}|
≤ |`(y, ϕ(w, x))− `(y, ϕ(w′, x))|+ |η − η′|
≤M‖ϕ(w, x)− ϕ(w′, x)‖+ |η − η′|
≤M distϕ(w,w′) + |η − η′| .

Then, (39) simply follows from the triangle inequality, and Claim 1 is proved.

The next step in the proof is, for a given ε > 0

– to construct a cover T of W × [0, B], and then

– to control the convergence over the points of T , more precisely to control the probability
of the event

En(ε) =
⋂

(w,η)∈T
{δn(w, η) ≤ ε/2} .

First, using Assumption 1, we consider T1 a (ε(1 − p)/(8M))-cover of W with respect to
distϕ. We also consider T2 a uniform discretization of the line segment [0, B] at width
ε(1 + 1/(1− p))/8. We can introduce the cover of W × [0, B]

T = T1 × T2 ⊂W × [0, B].

Since, |T2| = 8B/((1 + 1/(1 − p))ε), we have that |T | = (8B/((1 + 1/(1 − p))ε))N(ε(1 −
p)/(8M)). Note that the event {δn(w, η) ≤ ε/2} for fixed (w, η) since δn(w, η) is measurable,
and therefore, En(ε) is measurable since it is a finite intersection.

To get uniform convergence, it is sufficient to control what happens at points of T . Indeed,
for any (w, η), there exists a point (w′, η′) ∈ T such that distϕ(w,w′) ≤ ε(1− p)/(8M) and
|η − η′| ≤ ε(1 + 1/(1− p))/8. As a consequence, if the event En(ε) holds, then

δn(w, η) ≤ δn(w′, η′) + |δn(w, η)− δn(w′, η′)|
(39)
≤ δn(w′, η′) + 2M/(1− p) distϕ(w,w′) + 2(1 + 1/(1− p))|η − η′|

≤
ε

2
+
ε

4
+
ε

4
= ε.
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This implies that events of interest are included in En(ε), the complement of En(ε); we
have indeed

{
sup
w∈W

|Spn(w)− Sp(w)| > ε

}
⊂
{

sup
(w,η)∈W×[0,B]

δn(w, η) > ε

}
⊂ En(ε) .

Postponing the proof of measurability of these events to Claim 3 at the end of this proof,
we have the following bound on the sum of probabilities

∞∑
n=1

P
(

sup
w∈W

|Spn(w)− Sp(w)| > ε
)
≤
∞∑
n=1

P
(
En(ε)

)
. (40)

Claim 2: The probabilities of the complements of En(ε) are summable, i.e.,

∞∑
n=1

P
(
En(ε)

)
<∞ .

This is a direct application of the Hoeffding’s inequality (see e.g. [55, Theorem 2.2.2]) as
follows. For any fixed (w, η) ∈W × [0, B], the Hoeffding’s inequality gives

P(|δn(w, η)| > ε/2) ≤ 2 exp

(
−
nε2

2B2

)
.

Applied to all (w, η) ∈ T , this yields

P
(
En(ε)

)
≤ 2|T | exp

(
−
nε2

2B2

)
=

16B

((1 + 1/(1− p))ε
N

(
ε(1− p)

8M

)
exp

(
−
nε2

2B2

)
.

and proves Claim 2.

We conclude on the uniform convergence (38) with the Borel-Cantelli Lemma by the classical
rationale (see e.g. the textbook [37, Chap. 2, Sec. 6]): the bound (40) and Claim 2 give that
the probabilities for any ε are summable; applying Borel-Cantelli with the sequence εk = 1/k
gives the uniform convergence (38), which completes the proof of the theorem.

Finally, it remains to show measurability of some events of interest.

Claim 3: The following events are measurable for each ε > 0:

E′n(ε) :=

{
sup
w∈W

|Spn(w)− Sp(w)| > ε

}
,

E′′n(ε) :=

{
sup

(w,η)∈W×[0,B]
δn(w, η) > ε

}
.

We prove the claim for E′n(ε) and the second one is entirely analogous. Since the set Qd of
d-dimensional rationals is dense in Rd and the map w 7→ |Spn(w)− Sp(w)| is continuous, we
have that

sup
w∈W

|Spn(w)− Sp(w)| = sup
w∈W∩Qd

|Spn(w)− Sp(w)| .

Since the latter term is a supremum over a countable set of measurable random variables,
we get that E′n(ε) is measurable.
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B Numerical Illustrations

We provide simple illustrations of the interest of using superquantile for machine learning.
More precisely, we reproduce the experimental framework of the computational experiments
of [9] and we solve the superquantile optimization problems with the approach depicted
here, by combining smoothing and quasi-Newton. For additional experiments with other
datasets, metrics, and contexts, we refer to [9].

We consider two basic machine learning tasks (regression and classification) with linear
prediction functions ϕ(w, x) = w>x and with two standard datasets, from the UCI ML
repository. Denoting these datasets Pn = {(xi, yi)}1≤i≤n, we introduce the (regularized)
empirical risk minimization

min
w∈Rd

E(x,y)∼Pn

[
`(y, w>x)

]
+

1

2n
‖w‖2,

and its smoothed superquantile analogous

min
w∈Rd

[Sνp ]
(x,y)∼Pn

[
`(y, w>x)

]
+

1

2n
‖w‖2.

We solve these problems using L-BFGS via the toolbox SPQR [22] offering an simple user-
interface and implementing the oracles (with the Euclidean smoothing of Example 5 for the
smoothed approximation).
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Fig. 7: Regression: histogram of the regression errors on the testing dataset
for the model learning by the superquantile approach (red) compared to the
one of the classical empirical risk minimization (violet). We see a reshaping of
the histogram of errors and a gain on worst-case errors.

Regression and Least-Squares

We consider a regularised least square regression on the dataset Abalone from the UCI
Machine learning repository. We perform a 80%/20% train-test split on the dataset. We
minimize the least-squares loss on the training set both in expectation and with respect to
the superquantile (with p = 0.98 and ν = 0.1).

We report on Figure 7 the distribution of errors |yi−w>xi| for the testing dataset for both
models w (standard in blue and superquantile in red). We observe that the superquantile
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model exhibits a thinner upper tail than the risk-neutral model, which is quantified by the
shift to the left of 0.98 quantile. This comes at the price of lower performance in expectations
than the model trained with expectation, which is clear visible on the picture and quantified
by the shift to the right of the mean.

Classification and Logistic regression

We consider a logistic regression on the Australian Credit dataset. We randomly split the
dataset with a 80%/20% train-test split for 5 different seeds. For each seed, we perform a
pessimistic distributional shift on the training dataset by downsampling the majority class
(similarly to what is done in [9, Sec. 5.2]). More precisely, we remove an important fraction
of the majority class, randomly selected, so that it counts afterward for only 10% of the
minority class. We tune then the safety level parameter p by a k-cross validation on the
shifted dataset and select the safety parameter yielding the best validation accuracy. The
grid we use for tuning this parameter is [0.8, 0.85, 0.9, 0.95, 0.99] We finally compute with
this parameter the testing accuracy and the testing precision.

We report the testing accuracy and the testing precision averaged over the 5 different seeds
on the table of Figure 8 with the associated standard deviation. We observe that the su-
perquantile model brings better performance for both in terms of accuracy and precision
than the standard model.

Model Accuracy Precision
Standard 0.65± 0.03 0.56± 0.04

Superquantile 0.69± 0.04 0.60± 0.05

Fig. 8: Classification: better testing accuracy and precision for the superquan-
tile approach, in the case of distributional shifts.
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