SMAI-MODE 2020

A DOC APPROACH FOR CHANCE-CONSTRAINED PROBLEMS

Yassine LAGUEL^{*} - Joint work with J. Malick^{*} and W. Van Ackooij^{*} *Université Grenoble Alpes - CNRS - EDF R&D

Collaboration with

CNRS

J. MALICK

EDF R&D

W. VAN ACKOOIJ

Definition of Chance Constraints

• A chance constraint problem is of the form:

 $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $\mathbb{P}[g(x,\xi) \le 0] \ge p$

Definition of Chance Constraints

• A chance constraint problem is of the form:

Definition of Chance Constraints

• A chance constraint problem is of the form:

 $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $\mathbb{P}[g(x,\xi) \le 0] \ge p$

Chance constrained optimization problems are difficult:

non-convex

non-smooth

Studying under which conditions chance constraints are convex

Henrion, Strugarek 06'

Van Ackooij '15

Studying under which conditions chance constraints are convex

Henrion, Strugarek 06'

Van Ackooij '15

Studying under which conditions chance constraints are convex

Henrion, Strugarek 06'

Van Ackooij '15

Studying under which conditions chance constraints are convex

Henrion, Strugarek 06'

Van Ackooij '15

Non-smoothness of Chance Constraints

• Consider the discrete case : $\xi \in \{\xi_1, \ldots, \xi_n\}$

Recent works study the generalized differentiability properties of chance constraints

Van Ackooij, Henrion, '17

Geletu, Hoffmann, '19

Heitsch, '19

A data-driven setting

In this talk,

• f is convex. • g(., z) is convex for all $z \in \mathbb{R}^m$ • ξ is discrete: $\xi \in \{\xi_1, \ldots, \xi_n\} \subset \mathbb{R}^m$

Pagnoncelli, Ahmed, Shapiro(2009)

Chance Constraints are Bilevel Programs

Revealing the bilevel structure of Chance Constraints

CDFs, Quantiles & Superquantiles

Recall that for any real random variable U, • its cumulative distribution function, $F_U : \mathbb{R} \to [0, 1]$:

$F_U(t) = \mathbb{P}[U \le t]$

CDFs, Quantiles & Superquantiles

- Recall that for any real random variable U, its cumulative distribution function, $F_U : \mathbb{R} \to [0, 1]$:
 - on function, $F_U : \mathbb{R} \to [0, 1]$: $F_U(t) = \mathbb{P}[U \le t]$
 - for any $p \in [0, 1)$, its p-quantile $Q_p(U)$:
 - $Q_p(U) = \inf \left\{ t \in \mathbb{R}, \mathbb{P}[U \le t] \ge p \right\}$

Cumulative distribution function

CDFs, Quantiles & Superquantiles

- Recall that for any real random variable U, its cumulative distribution function, $F_U : \mathbb{R} \to [0, 1]$: $F_{U}(t) - \mathbb{P}[U < t]$
 - for any $p \in [0, 1)$, its p-quantile $Q_p(U)$: $Q_p(U) = \inf \{t \in \mathbb{R}, \mathbb{P}[U \le t] \ge p\}$
 - for any $p \in [0, 1)$, its p-superquantile $\bar{Q}_p(U)$: $\bar{Q}_p(U) = \frac{1}{1-p} \int_{p'=p}^1 Q_{p'}(U) dp'$

on function, $F_U : \mathbb{R} \to [0, 1]$: $F_U(t) = \mathbb{P}[U \le t]$ quantile $Q_p(U)$:

Cumulative distribution function

CDFs, Quantiles & Superguantiles

- $Q_p(U) = \inf \left\{ t \in \mathbb{R}, \mathbb{P}[U \le t] \ge p \right\}$
- $\bar{Q}_p(U) = \frac{1}{1-p} \int_{p'=p}^1 Q_{p'}(U) dp'$

Cumulative distribution function

Rockafellar's Duality Result

Rockafellar, Uryasev (2000): Superquantile and quantiles are optimal value and optimal solutions resp. of a same one-dimensional convex optimization problem.

$$\bar{Q}_p(U) = \min_{\eta \in \mathbb{R}} \eta + \frac{1}{1-p} \mathbb{E}[\max(U-\eta, 0)]$$
$$Q_p(U) = \operatorname*{argmin}_{\eta \in \mathbb{R}} \eta + \frac{1}{1-p} \mathbb{E}[\max(U-\eta, 0)]$$

Rockafellar's Duality Result

Rockafellar, Uryasev (2000): Superquantile and Quantiles are optimal value and optimal solutions resp. of a same one-dimensional convex optimization problem.

$$\bar{Q}_{p}(U) = \min_{\eta \in \mathbb{R}} \eta + \frac{1}{1-p} \mathbb{E}[\max(U-\eta, 0)]$$

$$Q_{p}(U) = \operatorname*{argmin}_{\eta \in \mathbb{R}} \eta + \frac{1}{1-p} \mathbb{E}[\max(U-\eta, 0)]$$
pution function
$$\eta \mapsto \eta + \frac{1}{1-p} \mathbb{E}[\max(U-\eta, 0)]$$

Cumulative distrib

From Chance Constraints to Bilevel Programs

Our approach: rewrite chance constraints as

$\mathbb{P}[g(x,\xi) \le 0] \ge p \iff Q_p(g(x,\xi)) \le 0$

From Chance Constraints to Bilevel Programs

Our approach: rewrite chance constraints as

We obtain the following bilevel program:

Upper Level

Lower Level

$$\min_{x \in \mathbb{R}^{d}, \eta \in \mathbb{R}} f(x)$$

s.t. $\eta \leq 0$

 $(g(x,\xi)) \le 0$ < 0 $\eta \in \underset{s \in \mathbb{R}}{\operatorname{argmin}} s + \frac{1}{1-p} \mathbb{E} \left[\max(g(x,\xi) - s, 0) \right]$

A double penalization method for **Chance Constraints**

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$
s.t. $x \in S$

Penalty function

$$P(x) = 0 \text{ if } x \in S$$
$$> 0 \text{ if } x \notin S$$

Penalized Problem

$$\min_{x \in \mathbb{R}^d} f(x) + \mu P(x)$$

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $x \in S$

Penalty function

$$P(x) = 0 \text{ if } x \in S$$
$$> 0 \text{ if } x \notin S$$

Penalized Problem $\min_{x \in \mathbb{R}^d} f(x) + \mu P(x)$

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $x \in S$

Penalty function

$$P(x) = 0 \text{ if } x \in S$$
$$> 0 \text{ if } x \notin S$$

Penalized Problem $\min_{x \in \mathbb{R}^d} f(x) + \mu P(x)$

 $\mu_1 = 1$

 $\mu_0 = 0$

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $x \in S$

$$P(x) = 0 \text{ if } x \in S$$
$$> 0 \text{ if } x \notin S$$

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $x \in S$

Any cluster point of the sequence of solutions $(x_k)_{k>0}$ is a solution of the constrained problem.

The penalization procedure

min
 $x \in \mathbb{R}^d$ Penalty functionPenalized Problem $x \in \mathbb{R}^d$ P(x) = 0 if $x \in S$ $\min_{x \in \mathbb{R}^d} f(x) + \mu P(x)$ s.t. $x \in S$ 0 if $x \notin S$ $\min_{x \in \mathbb{R}^d} f(x) + \mu P(x)$

Any cluster point of the sequence of solutions $(x_k)_{k\geq 0}$ is a solution of the constrained problem.

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$ Penalty function **Penalized Problem** $P(x) = 0 \text{ if } x \in S \qquad \min_{x \in \mathbb{R}^d} f(x) + \mu P(x)$ > 0 if $x \notin S$ s.t. $x \in S$

Any cluster point of the sequence of solutions $(x_k)_{k>0}$ is a solution of the constrained problem.

 $\min_{x \in \mathbb{R}^d} f(x)$ Assume f to be K-lipschitz on \mathbb{R}^d . s.t. $x \in S$

Then, for any K' > K, this problem has the same set of minimisers as $\min_{x \in \mathbb{R}^d} f(x) + K' d_S(x)$

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$ Penalty function **Penalized Problem** $P(x) = 0 \text{ if } x \in S \qquad \min_{x \in \mathbb{R}^d} f(x) + \mu P(x)$ > 0 if $x \notin S$ s.t. $x \in S$

Any cluster point of the sequence of solutions $(x_k)_{k>0}$ is a solution of the constrained problem.

 $\min_{x \in \mathbb{R}^d} f(x)$ Assume f to be K-lipschitz on \mathbb{R}^d . s.t. $x \in S$

Then, for any K' > K, this problem has the same set of minimisers as $\min_{x \in \mathbb{R}^d} f(x) + K' d_S(x)$

The penalization procedure

 $\min_{x \in \mathbb{R}^d} f(x)$ **Penalty function** s.t. $x \in S$

Any cluster point of the sequence of solutions $(x_k)_{k>0}$ is a solution of the constrained problem.

$$(\mathcal{P}_{\mu}) \qquad \min_{\substack{x \in \mathbb{R}^{d}, \eta \in \mathbb{R} \\ \text{ s.t. } \eta \in \operatorname{argmin}_{s \in \mathbb{R}} s + \frac{1}{1-p}}} \mathbb{E}\left[\max(g(x,\xi) - \frac{1}{1-p}\right] \mathbb{E}\left[\max$$

In practice, the constant μ is a hyperparameter to tune.

$$(\mathcal{P}_{\mu}) \qquad \min_{\substack{x \in \mathbb{R}^{d}, \eta \in \mathbb{R} \\ \text{ s.t. } \eta \in \operatorname{argmin} s + \frac{1}{1-p}}} f(x) + \mu \max(\eta, 0) \\ \text{ s.t. } \eta \in \operatorname{argmin} s + \frac{1}{1-p}} \mathbb{E} \left[\max(g(x, \xi) - y) \right] = 0$$

First penalization
$$(\mathcal{P}) \qquad (\mathcal{P}) \qquad (\mathcal{P}\mu) \qquad$$

In practice, the constant μ is a hyperparameter to tune.

Using Rockafellar property

$$\min_{\substack{x \in \mathbb{R}^d, \eta \in \mathbb{R} \\ \text{s.t.}}} f(x) + \mu \max(\eta, 0)$$

s.t. $G(x, \eta) - \bar{Q}_p(g(x, \xi)) \le 0$

[-s, 0)]

 $(\mathcal{P}_{\lambda,\mu}) \min_{x \in \mathbb{R}^d, \eta \in \mathbb{R}} f(x) + \mu \max(\eta, 0) + \lambda \left(G(x, \eta) - \bar{Q}_p(g(x, \xi)) \right)$

This penalization is exact.

Theorem Let $\mu > 0$ be given and fixed and assume that the solution set of problem (\mathcal{P}_{μ}) is not empty. Then for any $\lambda > \lambda_{\mu} = \frac{\mu}{\delta}$ where: $\delta = \begin{cases} \frac{1}{n(1-p)} & \text{if } p \in \mathcal{I} \\ \frac{d_{\mathcal{I}}(p)}{1-p} & \text{otherwise.} \end{cases}$

the solution set of (\mathcal{P}_{μ}) coincides with the solution set of $(\mathcal{P}_{\lambda,\mu})$

$$(\mathcal{P}_{\lambda,\mu}) \min_{x \in \mathbb{R}^d, \eta \in \mathbb{R}} f(x) + \mu \max(\eta, 0) + \lambda \left(G(x, \eta) - \bar{Q}_p(g(x, \eta)) - \bar{Q}_p(g(x, \eta)) \right)$$

 $(\mathcal{P}_{\lambda,\mu})$ $\min_{x \in \mathbb{R}^{d}, \eta \in \mathbb{R}} f(x) + \mu \max(\eta, 0) + \lambda \left(G(x, \eta) - \bar{Q}_{p}(g(x, \xi)) \right)$

Convex

Non convex but...

$$\begin{aligned} (\mathcal{P}_{\lambda,\mu}) & \min_{x \in \mathbb{R}^d, \eta \in \mathbb{R}} f(x) + \mu \max(\eta, 0) + \lambda \left(G(x, \eta) - \bar{Q}_p(g(x, \eta)) - \bar{Q}_p$$

Second penalization

$$(\mathcal{P}_{\mu})$$

$$\min_{\substack{x \in \mathbb{R}^{d}, \eta \in \mathbb{R} \\ \text{ s.t. }}} f(x) + \mu \max(\eta, 0)$$

$$\int_{x \in \mathbb{R}^{d}, \eta \in \mathbb{R}} f(x, \eta) - \bar{Q}_{p}(g(x, \xi)) \leq 0$$

 \bar{Q}_p is convex ! $(\mathcal{P}_{\lambda,\mu})$ is a Difference of Convex problem.

$$\bar{Q}_p(U) = \frac{1}{1-p} \int_{p'=p}^1 Q_{p'}(U) dp'$$

Second penalization

$$(\mathcal{P}_{\mu})$$

 $\min_{x \in \mathbb{R}^{d}, \eta \in \mathbb{R}} f(x) + \mu \max(\eta, 0)$
s.t. $G(x, \eta) - \bar{Q}_{p}(g(x, \xi)) \leq 0$

 \bar{Q}_p is convex ! $(\mathcal{P}_{\lambda,\mu})$ is a Difference of Convex problem.

$$\bar{Q}_p(U) = \frac{1}{1-p} \int_{p'=p}^1 Q_{p'}(U) dp' = \sup_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}} \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}}^n \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}}^n \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}}^n \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}}^n \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}}^n \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}}^n \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le q_i \le \frac{1}{n(1-p)}}}^n \sum_{i=1}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le \frac{1}{n(1-p)}}}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le \frac{1}{n(1-p)}}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le \frac{1}{n(1-p)}}}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le \frac{1}{n(1-p)}}^n \sum_{\substack{q \in \mathbb{R}^n \\ 0 \le \frac{1}{n(1-p)}$$

 $q_i U_i$

A Python Toolbox for Chance Constrained Problems

Bundle methods in a nutshell

Minimization of non-smooth problems

- Minimization of non-smooth problems
- Maintains:
 - the Bundle Information.
 - the Polyhedral Approximation.

$$x \mapsto \varphi(x_i) + g_{\varphi}^{\top}(x - x_i)$$
$$\widecheck{\varphi}(x) = \max_{i \in \text{Bundle}} \varphi(x_i) + g_{\varphi}^{\top}(x - x_i)$$

- Minimization of non-smooth problems
- Maintains:
 - the Bundle Information.
 - the Polyhedral Approximation.
 - the Stability Center in the bundle.

$$x \mapsto \varphi(x_i) + g_{\varphi}^{\top}(x - x_i)$$
$$\breve{\varphi}(x) = \max_{i \in \text{Bundle}} \varphi(x_i) + g_{\varphi}^{\top}(x - x_i)$$
$$\min_{x \in \mathbb{R}^d} \breve{\varphi}(x) + \alpha ||x - x_{(S)}||_2^2$$

- Minimization of non-smooth problems
- Maintains:
 - the Bundle Information.
 - the Polyhedral Approximation.
 - the Stability Center in the bundle.

- Minimization of non-smooth problems
- Maintains:
 - the Bundle Information.
 - the Polyhedral Approximation.
 - the Stability Center in the bundle.

- Minimization of non-smooth problems
- Maintains:
 - the Bundle Information.
 - the Polyhedral Approximation.
 - the Stability Center in the bundle.

The DC problem

For Our DC Problem

The DC problem

Smoothing of the superquantile [L., Malick, Harchaoui 20']

Smoothing of f_2 based on Nesterov's technique.

$$ar{Q}_p(U) = \sup_{\substack{q \in \mathbb{R}^n \ n \in \mathbb{R}^n \ 0 \leq q_i \leq \frac{1}{n(1-p)}}} \sum_{i=1}^n q_i U_i$$

 \mathcal{D}

For Our DC Problem

The DC problem

$$(\mathcal{P}_{\lambda,\mu}) \underset{x \in \mathbb{R}^{d},\eta \in \mathbb{R}}{\underset{f(x) + \mu \max(\eta, 0) + \lambda \left(G(x,\eta) - \bar{Q}_{p}(g(x,\xi))\right)}{\varphi_{2}}}$$

Smoothing of the superquantile [L., Malick, Harchaoui 20']

Smoothing of f_2 based on Nesterov's technique.

$$\bar{Q}_{p}(U) \simeq \sup_{\substack{q \in \mathbb{R}^{n} \\ n \in \mathbb{R}^{n} \\ 0 \leq q_{i} \leq \frac{1}{n(1-p)}}} \sum_{i=1}^{n} q_{i}U_{i} - \frac{\alpha}{2} \|q - \frac{1}{n}(1, \dots, 1)^{\top}\|^{2}$$

For Our DC Problem

What a long process!

• What about the implementation ?

DOUBLE PENALIZATION

BUNDLE METHOD

What a long process!

• What about the implementation ?

DOUBLE PENALIZATION

BUNDLE METHOD

Goal : solve a problem of the form

Input : the class Problem

First-order oracles for f and g.

- A sampled dataset for the values of ξ .
- A python dictionary of parameters.

$\min_{x \in \mathbb{R}^d} f(x)$ s.t. $\mathbb{P}[g(x,\xi) \le 0] \ge p$

- Goal : solve a problem of the form $\min_{x \in \mathbb{R}^d} f(x)$
- Input : the class Problem
 - First-order oracles for f and g.
 - A sampled dataset for the values of ξ .
 - A python dictionary of parameters.
- The class **Optimizer**
 - Instantiate with the inputs.
 - Optimization launched with the method **run**.

s.t. $\mathbb{P}[g(x,\xi) \le 0] \ge p$

Example : Kataoka's Example

In[2]: optimizer = Optimizer(problem, params=params)
 optimiser.run()

s.t. $\mathbb{P}[g(x,\xi) \le 0] \ge p$

Example : Kataoka's Example

- In[2]: optimizer = Optimizer(problem, params=params)
 optimiser.run()
- In[3]: sol = optimizer.solution

s.t. $\mathbb{P}[g(x,\xi) \le 0] \ge p$

Example : Kataoka's Example

In[2]:	<pre>optimizer = Optimizer(problem, optimiser.run()</pre>	params=param

In[3]: sol = optimizer.solution

Hyperparameters

- Probability threshold p
- Penalization parameters μ, λ
- Number of iterations, starting point, target precision, etc.

Numerical Illustrations

■ 2D quadratic problem

$$\min_{x \in \mathbb{R}^d} f(x) \qquad \qquad f(x) = (x - c)^\top A(x - c)$$
s.t.
$$\mathbb{P}[g(x, \xi) \le 0] \ge p \quad g(x, z) = z^\top W(x)^\top z + p^\top z + b$$
$$\qquad \qquad \xi \sim \mathcal{N}(\mu, \Sigma)$$

■ 2D quadratic problem

$$\min_{x \in \mathbb{R}^d} \frac{f(x)}{f(x)} \qquad f(x) = (x - c)^\top A(x - c)$$

s.t.
$$\mathbb{P}[g(x, \xi) \le 0] \ge p \qquad g(x, z) = z^\top W(x)^\top z + p^\top z + b$$

$$\xi \sim \mathcal{N}(\mu, \Sigma)$$

$$c = \begin{pmatrix} 2.\\ 2. \end{pmatrix} \quad A = \begin{pmatrix} 5.5 & 4.5\\ 4.5 & 5.5 \end{pmatrix}$$

■ 2D quadratic problem

$$\min_{x \in \mathbb{R}^d} \frac{f(x)}{\mathbb{P}[g(x,\xi) \le 0] \ge p} \quad \frac{f(x) = (x-c)^\top A(x-c)}{g(x,z) = z^\top W(x)^\top z + q^\top z + r}$$
$$\frac{\xi \sim \mathcal{N}(\mu, \Sigma)}{\xi \sim \mathcal{N}(\mu, \Sigma)}$$

$$c = \begin{pmatrix} 2.\\ 2. \end{pmatrix} A = \begin{pmatrix} 5.5 & 4.5\\ 4.5 & 5.5 \end{pmatrix}$$
$$W : x = (x_1, x_2)^\top \mapsto \begin{pmatrix} x_1^2 + 0.5 & 0.0\\ 0.0 & |x_2 - 1|^3 + 1. \end{pmatrix}$$
$$q = \begin{pmatrix} 1.\\ 1. \end{pmatrix}, \ r = -1$$

 $\boldsymbol{\xi}$ is sampled 10000 times with parameters $\mu =$

(1.)

■ 2D quadratic problem

$$\min_{x \in \mathbb{R}^d} \frac{f(x)}{\mathbb{P}[g(x,\xi) \le 0] \ge p} \quad \frac{f(x) = (x-c)^\top A(x-c)}{g(x,z) = z^\top W(x)^\top z + q^\top z + r}$$
$$\frac{\xi \sim \mathcal{N}(\mu, \Sigma)}{\xi \sim \mathcal{N}(\mu, \Sigma)}$$

$$c = \begin{pmatrix} 2.\\ 2. \end{pmatrix} A = \begin{pmatrix} 5.5 & 4.5\\ 4.5 & 5.5 \end{pmatrix}$$
$$W : x = (x_1, x_2)^\top \mapsto \begin{pmatrix} x_1^2 + 0.5 & 0.0\\ 0.0 & |x_2 - 1|^3 + 1. \end{pmatrix}$$
$$q = \begin{pmatrix} 1.\\ 1. \end{pmatrix}, \ r = -1$$

 $\boldsymbol{\xi}$ is sampled 10000 times with parameters $\mu =$

(1.)

■ 2D quadratic problem

$$\min_{x \in \mathbb{R}^d} \frac{f(x)}{\mathbb{P}[g(x,\xi) \le 0] \ge p} \quad \frac{f(x) = (x-c)^\top A(x-c)}{g(x,z) = z^\top W(x)^\top z + q^\top z + r}$$
$$\frac{\xi \sim \mathcal{N}(\mu, \Sigma)}{\xi \sim \mathcal{N}(\mu, \Sigma)}$$

$$c = \begin{pmatrix} 2.\\ 2. \end{pmatrix} A = \begin{pmatrix} 5.5 & 4.5\\ 4.5 & 5.5 \end{pmatrix}$$
$$W : x = (x_1, x_2)^\top \mapsto \begin{pmatrix} x_1^2 + 0.5 & 0.0\\ 0.0 & |x_2 - 1|^3 + 1. \end{pmatrix}$$
$$q = \begin{pmatrix} 1.\\ 1. \end{pmatrix}, \ r = -1$$

 $\boldsymbol{\xi}$ is sampled 10000 times with parameters $\mu =$

(1.)

■ 2D quadratic problem

$$\min_{x \in \mathbb{R}^d} \frac{f(x)}{\mathbb{P}[g(x,\xi) \le 0] \ge p} \quad \frac{f(x) = (x-c)^\top A(x-c)}{g(x,z) = z^\top W(x)^\top z + q^\top z + r}$$
$$\frac{\xi \sim \mathcal{N}(\mu, \Sigma)}{\xi \sim \mathcal{N}(\mu, \Sigma)}$$

$$c = \begin{pmatrix} 2.\\ 2. \end{pmatrix} A = \begin{pmatrix} 5.5 & 4.5\\ 4.5 & 5.5 \end{pmatrix}$$
$$W : x = (x_1, x_2)^\top \mapsto \begin{pmatrix} x_1^2 + 0.5 & 0.0\\ 0.0 & |x_2 - 1|^3 + 1. \end{pmatrix}$$
$$q = \begin{pmatrix} 1.\\ 1. \end{pmatrix}, \ r = -1$$

 $\boldsymbol{\xi}$ is sampled 10000 times with parameters $\mu =$

(1.)

Numerical Experiments on Second Toy Problem

• A norm optimization problem

$$\begin{array}{c|c} \min_{x \in \mathbb{R}^{d}} f(x) & f(x) = -\|x\|_{1} \\ \text{s.t.} & \mathbb{P}[g(x,\xi) \leq 0] \geq p \\ \text{s.t.} & \mathbb{P}[g(x,\xi) \leq 0] \geq p \\ & g: \mathbb{R}^{d} \times \mathcal{M}_{n,d} \rightarrow \mathbb{R} \\ & x, Z \mapsto \max_{i \in [n]} \sum_{j=1}^{d} Z_{i,j}^{2} x_{j}^{2} \\ & \xi_{i,j} \sim \mathcal{N}(0,1) \\ & p = 0.8 \end{array}$$

Numerical Experiments on Second Toy Problem

• A norm optimization problem

$$\begin{array}{c|c} \min_{x \in \mathbb{R}^{d}} f(x) & f(x) = -\|x\|_{1} \\ \text{s.t.} & \mathbb{P}[g(x,\xi) \leq 0] \geq p \\ \text{s.t.} & \mathbb{P}[g(x,\xi) \leq 0] \geq p \\ & g: \mathbb{R}^{d} \times \mathcal{M}_{n,d} \rightarrow \mathbb{R} \\ & x, Z \mapsto \max_{i \in [n]} \sum_{j=1}^{d} Z_{i,j}^{2} x_{j}^{2} \\ & \xi_{i,j} \sim \mathcal{N}(0,1) \\ & p = 0.8 \end{array}$$

Optimal value and solution

$$f^{\star} = \frac{10d}{\sqrt{F_{\chi_d^2}^{-1}(p^{\frac{1}{10}})}} \quad x_i^{\star} = \frac{10}{\sqrt{F_{\chi_d^2}^{-1}(p^{\frac{1}{10}})}}, i \in \{1, \dots, d\}$$

Quantile function of a χ^2 distribution with d degrees of freedom

Numerical Experiments on Second Toy Problem

Dimension	Final Sub-optimality	$\mathbb{P}[g(x,\xi) \le 0]$	μ	λ
d = 2	5.1×10^{-4}	0.7992	0.01	10.0
d = 10	2.4×10^{-2}	0.8	1.0	0.01
d = 50	1.2×10^{-1}	0.7999	1.0	10.0
d = 200	2.8×10^{-1}	0.7997	1.0	0.01

penalty for the hard constraint.

We propose a python toolbox to test out your problems.

Derive more methods from the bilevel approach

yassine.laguel@univ-grenoble-alpes.fr

- We propose a new approach to chance constraints via Bilevel Programming.
- We derive a double penalization method for this approach, with an exact

References

- S. Kataoka.: A stochastic programming model. Econometrica **31**, (1963)
- R. Henrion, C. Strugarek: Convexity of chance constraints with independent random variables. Computational Optimization and Applications (2008)
- W. Van Ackooij: Eventual convexity of chance constrained feasible sets. Optimization, (2015)
- W. Van Ackooij, J. Malick: Eventual convexity of probability constraints with elliptical distributions. Mathematical Programming, (2019)
- W. Van Ackooij, J. Malick: Second-order differentiability of probability functions. Optimization Letters (2017)
- W. Van Ackooij, R. Henrion: (Sub-)Gradient formulae for probability functions of random inequality systems under Gaussian distributionOptimization Letters (2017)
- A. Geletu, A. Hoffmann: Analytic approximation and differentiability of joint chance constraints. Optimization (2019)
- W. Van Ackooij, P. Pérez-Aros: Generalized differentiation of probability functions acting on an infinite system of constraints. SIAM Journal on Optimization (2019)
- H. Heitsch: On probabilistic capacity maximization in a stationary gas networks. Optimization (2019)
- RT Rockafellar, S Uryasev: Optimization of conditional value-at-risk. Journal of risk (2000)
- W de Oliveira: Proximal bundle methods for nonsmooth DC programming. Journal of Global Optimization (2019)
- Y. Laguel, J Malick, Z. Harchaoui: First-rrder optimization for Superquantile-based learning. MLSP (2020) 22