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Definition of Chance Constraints

Chance constrained optimization problems are difficult:

non-convex

non-smooth

A chance constraint problem is of the form:
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Non-smoothness of Chance Constraints

Consider the discrete case :  

Not even continuous !

Recent works study the generalized differentiability properties of chance constraints

Heitsch, ‘19Van Ackooij, Henrion, ‘17 Geletu, Hoffmann, ‘19
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A data-driven setting 

In this talk, 

is discrete :

is convex.

is convex for all 

Many existing approaches

MINLP approaches

Boolean Methods

DoC approaches

Paul Javal’s talk yesterday

Pagnoncelli, Ahmed, Shapiro(2009)

Kogan, Lejeune (2014)

Hong, Yang, Zhang (2009)
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CDFs, Quantiles & Superquantiles
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Cumulative distribution function
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Rockafellar’s Duality Result

Rockafellar, Uryasev (2000): Superquantile and quantiles are optimal value and 
optimal solutions resp. of a same one-dimensional convex optimization problem.
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Rockafellar’s Duality Result

Rockafellar, Uryasev (2000): Superquantile and Quantiles are optimal value and 
optimal solutions resp. of a same one-dimensional convex optimization problem.

Cumulative distribution function
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From Chance Constraints to Bilevel Programs

Our approach: rewrite chance constraints as
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From Chance Constraints to Bilevel Programs

Our approach: rewrite chance constraints as

We obtain the following bilevel program:

Upper Level

Lower Level
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Recall Penalization on a Picture

The penalization procedure
Penalty function Penalized Problem
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Penalty function Penalized Problem

μ3 = 20

μ1 = 1

μ2 = 10

x1x2x3

μ0 = 0
x0x⋆

Assume   to be   -lipschitz on   . 

Then, for any            , this problem has the same set of 
minimisers as 

Uniform Parametric Error Bound

Any cluster point of the sequence of solutions           is a 
solution of the constrained problem.         
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Recall Penalization on a Picture

The penalization procedure Exact penalization



We propose a Double Penalization Procedure

First penalization
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In practice, the constant  is a hyperparameter to tune.μ

11

First penalization



We propose a Double Penalization Procedure

In practice, the constant  is a hyperparameter to tune.μ

Using Rockafellar property
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First penalization
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Second penalization

We propose a Double Penalization Procedure



problem       is not empty. Then for any  where: λ > λμ =
μ
δ

This penalization is exact.

Let μ > 0 be given and fixed and assume that the solution set ofTheorem

the solution set of        coincides with the solution set of 

12

We propose a Double Penalization Procedure

Second penalization
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Solving of the doubly-penalized problem

Convex Non convex
but…

Second penalization
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State-of-the-art methods for DC problems
[De Oliveira 19’]
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State-of-the-art methods for DC problems
[De Oliveira 19’]

x0 x1x2 = x(S)

Bundle methods in a nutshell
Minimization of non-smooth problems

Global Local d-stationary Critical

For the  
bundle method

Improvement  
when  is smooth φ2

Recall: Solving DC programs by Bundle

14

Function of the form 

We now solve at each iteration :

Maintains: 
•the Bundle Information. 
•the Polyhedral Approximation.  
•the Stability Center in the bundle. 

Update rule for the stability center:

Convergence property



For Our DC Problem
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The DC problem



Smoothing of the superquantile [L., Malick, Harchaoui 20’]

For Our DC Problem
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Smoothing of     based on Nesterov’s technique.

The DC problem
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Smoothing of     based on Nesterov’s technique.

The DC problem

For Our DC Problem

[L., Malick, Harchaoui 20’]Smoothing of the superquantile
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PROBLEM BILEVEL PROGRAM DOUBLE PENALIZATION BUNDLE METHOD

What about the implementation ?
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TACO : a Toolbox for chAnce Constrained Optimization

First-order oracles for  and .f g

Goal : solve a problem of the form 

A sampled dataset for the values of .ξ

A python dictionary of parameters.

Example : Kataoka’s Example

In[1]: import numpy as np

class Kataoka:
    
    def __init__(self, nb_samples=10000, nb_features=2, seed=42):

        np.random.seed(seed)
        mean = np.array([1.0, 1.0])
        cov =  np.eye(2)
        self.data = np.random.multivariate_normal(mean, cov,    
size=self.nb_samples)

    def objective_func(self, x):
         return 0.5*np.dot(x,x)

    def objective_grad(self,x):
        return x

    def constraint_func(self, x, z):
        return np.dot(x,z)

    def constraint_grad(self, x, z):
        return z

Input : the class Problem

17



TACO : a Toolbox for chAnce Constrained Optimization

Input : the class Problem

Instantiate with the inputs.

The class Optimizer

Goal : solve a problem of the form 

A sampled dataset for the values of .ξ

Example : Kataoka’s Example

In[2]: optimizer = Optimizer(problem, params=params)
optimiser.run()

First-order oracles for  and .f g

Optimization launched with the method run.

A python dictionary of parameters.
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TACO : a Toolbox for chAnce Constrained Optimization

Output

Example : Kataoka’s Example

In[2]:

In[3]: sol = optimizer.solution

optimizer = Optimizer(problem, params=params)
optimiser.run()

Input : the class Problem

Instantiate with the inputs.

The class Optimizer

A sampled dataset for the values of .ξ

First-order oracles for  and .f g

Optimization launched with the method run.

Retrieved from the Optimizer class.

A python dictionary of parameters.
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TACO : a Toolbox for chAnce Constrained Optimization

Goal : Solve a problem of the form 

Output

Retrieved from the Optimizer class.

Example : Kataoka’s Example

In[2]:

In[3]: sol = optimizer.solution

optimizer = Optimizer(problem, params=params)
optimiser.run()

Input : the class Problem

Instantiate with the inputs.

The class Optimizer

A sampled dataset for the values of .ξ

Optimization launched with the method run.
Hyperparameters

Probability threshold p

Number of iterations, starting point, target 
precision, etc.

Penalization parameters μ, λ

First-order oracles for  and .f g

A python dictionary of parameters.
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Proof of concept on a quadratic Chance constraint Problem

2D quadratic problem
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Numerical Experiments on Second Toy Problem

A norm optimization problem
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Optimal value and solution

Quantile function of a  distribution with d degrees of freedomχ2



Numerical Experiments on Second Toy Problem

A family of norm optimization problems
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Optimal value and solution

Numerical Results
d=2 d=10

d=50 d=200

Dimension Final  
Sub-optimality

d = 10
d = 50

d = 200

5.1 × 10−4 0.7992

2.4 × 10−2 0.8
1.2 × 10−1 0.7999

2.8 × 10−1 0.7997

d = 2

1.0

1.0
1.0

0.01

0.01

10.0
0.01

10.0

Quantile function of a  distribution with d degrees of freedomχ2

Hong, Yang, Zhang (2009)



Conclusion

We propose a new approach to chance constraints via Bilevel Programming.

We derive a double penalization method for this approach, with an exact 
penalty for the hard constraint.

We propose a python toolbox to test out your problems.

21

Derive more methods from the bilevel approach

yassine.laguel@univ-grenoble-alpes.fr

mailto:yassine.laguel@univ-grenoble-alpes.fr
mailto:yassine.laguel@univ-grenoble-alpes.fr
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