DEVICE HETEROGENEITY IN FEDERATED LEARNING A SUPERQUANTILE APPROACH

JOURNEES DES STATISTIQUES 2021 Yassine LAGUEL - Joint work with K. Pillutla, J. Malick and Z. Harchaoui

*Université Grenoble Alpes - CNRS - University of Washington

CNRS

J. MALICK

University of Washington

Collaboration with

K. PILLUTLA

University of Washington

Z. HARCHAOUI

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^N \alpha_i \ F_i(w) \qquad F_i(w) = \mathbb{E}_{\xi \sim q_i}[f(w, w)] = \mathbb{E}_{\xi \sim q_i}[f(w, w)]$$

Data distribution of device i

Measuring Conformity in Federated Learning

• Modeling Heterogeneity on training devices

- We dispose of N training devices.
- Each training device is characterized by a distribution q_i over some data space and a weight $\alpha_i > 0$ such that $\sum_{i=1}^{N} \alpha_i = 1$ <u>Base distribution</u> $p_{\alpha} = \sum_{i=1}^{N} \alpha_i q_i$

Measuring Conformity in Federated Learning

• Modeling Heterogeneity on training devices

- We dispose of N training devices.
- Each training device is characterized by a distribution q_i over some data space and a weight $\alpha_i > 0$ such that $\sum_{i=1}^{N} \alpha_i = 1$ <u>Base distribution</u> $p_{\alpha} = \sum_{i=1}^{N} \alpha_i q_i$

Measuring conformity on testing devices

We consider test devices to have a distribution that can be written as a mixture of the training distributions.

$$p_{\pi} = \sum_{i=1}^{N} \pi_i \alpha_i \qquad \pi \in \Delta_{N-1} \text{ ie } \begin{cases} 0 \le \pi_k \le 1 & \text{for all } 1 \le i \le N \\ \sum_{k=1}^{N} \pi_k = 1 \end{cases}$$

Measuring Conformity in Federated Learning

Modeling Heterogeneity on training devices

- We dispose of N training devices.
- Each training device is characterized by a distribution q_i over some data space and a weight $\alpha_i > 0$ such that $\sum_{i=1}^{N} \alpha_i = 1$ <u>Base distribution</u> $p_{\alpha} = \sum_{i=1}^{n} \alpha_i q_i$

Measuring conformity on testing devices

We consider test devices to have a distribution that can be written as a mixture of the training distributions.

$$p_{\pi} = \sum_{i=1}^{N} \pi_i \alpha_i \qquad \pi \in \Delta_{N-1} \text{ ie } \begin{cases} 0 \le \pi_k \le 1 & \text{for all } 1 \le i \le N \\ \sum_{k=1}^{N} \pi_k = 1 \end{cases}$$

The conformity $\operatorname{conf}(p_{\pi}) \in [0, 1]$ of a mixture p_{π} with weight π is defined as:

$$\operatorname{conf}(p_{\pi}) = \min_{i \in \{1, \dots, N\}} \alpha_i /$$

The conformity of a device refers to the conformity of its data distribution.

 π_i

6

The Δ -FL Framework

The $\Delta\text{-FL}$ Framework

\Box Δ -FL's Objective

We propose to solve for a conformity parameter. $\theta \in (0, 1]$:

$$\min_{v \in \mathbb{R}^d} \left[F_{\theta}(w) = \max_{\pi \in \mathcal{P}_{\theta}} \mathbb{E}_{\xi \sim p_{\pi}}[f(w,\xi)] \right] \text{ where}$$
$$\mathcal{P}_{\theta} := \{ \pi \in \Delta_{N-1} : c \}$$

The $\Delta\text{-FL}$ Framework

\Box Δ -FL's Objective

We propose to solve for a conformity parameter. $\theta \in (0, 1]$:

$$\min_{w \in \mathbb{R}^d} \begin{bmatrix} F_{\theta}(w) = \max_{\pi \in \mathcal{P}_{\theta}} \mathbb{E}_{\xi \sim p_{\pi}}[f(w,\xi)] \end{bmatrix} \text{ where}$$
$$\mathcal{P}_{\theta} := \{\pi \in \Delta_{N-1} : \phi \in \mathcal{P}_{\theta} \in \Phi_{N-1} : \phi \in \Phi$$

Superquantile loss

For any random variable $U: \Omega \to \mathbb{R}$ the superquantile of U is

$$S_{\theta}(U) = \sup_{\substack{\pi \in \Delta_{N-1} \\ 0 \le \frac{\pi_i}{\alpha_i} \le \frac{1}{\theta}}} \sum_{i=1}^{N} \pi_i U_i \quad (\text{when } \mathbb{P}[U]$$

The $\Delta\text{-FL}$ Framework

\Box Δ -FL's Objective

We propose to solve for a conformity parameter $\theta \in (0, 1]$:

$$\min_{w \in \mathbb{R}^d} \begin{bmatrix} F_{\theta}(w) = \max_{\pi \in \mathcal{P}_{\theta}} \mathbb{E}_{\xi \sim p_{\pi}}[f(w,\xi)] \end{bmatrix} \text{ where}$$
$$\mathcal{P}_{\theta} := \{\pi \in \Delta_{N-1} : \phi \in \mathcal{P}_{\theta} \in \Phi_{N-1} : \phi \in \Phi$$

Superquantile loss

For any random variable $U: \Omega \to \mathbb{R}$ the superquantile of U is

$$S_{\theta}(U) = \sup_{\substack{\pi \in \Delta_{N-1} \\ 0 \le \frac{\pi_i}{\alpha_i} \le \frac{1}{\theta}}} \sum_{i=1}^{N} \pi_i U_i \quad (\text{when } \mathbb{P}[U]$$

In Δ -FL, we are using the superquantile at a user level

$$U = \mathbb{E}\left[F_{\mathbf{k}}(w) \mid \mathbf{k}\right] = \mathbb{E}_{\xi \sim q_{\mathbf{k}}}\left[f(w,\xi)\right] \quad \mathbf{w}$$

$$F_{\theta}(w) = S_{\theta}(F_{\mathbf{k}}(w))$$

with $\mathbb{P}[\mathbf{k}=i] = \alpha_i$

• Assume we have only three users at training time

 $\alpha = (1/3, 1/3, 1/3)$

$$F_{\theta}(w) = \sup_{\substack{\pi \in \mathbb{R}^{3} \\ \pi_{1} + \pi_{2} + \pi_{3} = 1 \\ 0 \le \frac{\pi_{i}}{1/3} \le 1/\theta}} \sum_{i=1}^{3} \pi_{i} F_{i}(w)$$

$$\alpha = (1/3, 1/3, 1/3)$$

$$F_{\theta}(w) = \sup_{\substack{\pi \in \mathbb{R}^3 \\ 0 \le 3\pi \le \frac{1}{\theta} \\ \pi_1 + \pi_2 + \pi_3 = 1}} \sum_{i=1}^3 \pi_i F_i(w)$$

$$\alpha = (1/3, 1/3, 1/3)$$

$$F_{\theta}(w) = \sup_{\substack{\pi \in \mathbb{R}^3 \\ 0 \le 3\pi \le \frac{1}{\theta} \\ \pi_1 + \pi_2 + \pi_3 = 1}} \sum_{i=1}^3 \pi_i F_i(w)$$

$$\alpha = (1/3, 1/3, 1/3)$$

Rockafellar's Duality Result

A Duality Result for superquantiles [Rockafellar 2000'] For any $\theta \in (0, 1]$, and any discrete random variable U, $S_{\theta}(U) = \min_{\eta \in \mathbb{R}} \eta$ $Q_p(U) = \operatorname{argm}_{\pi}$

$$+ \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$$

in $\eta + \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$
 \mathbb{R}

Rockafellar's Duality Result

• A Duality Result for superquantiles [Rockafellar 2000'] For any $\theta \in (0, 1]$, and any discrete random variable U, $S_{\theta}(U) = \min_{\eta \in \mathbb{R}} \eta$ $Q_p(U) = \underset{\eta \in \mathbb{R}}{\operatorname{argmi}}$ $= 1 - \theta$

In our case, we can rewrite Δ -FL's objective as a joint minimization problem:

$$\min_{w \in \mathbb{R}^d} F_{\theta}(w) = \min_{w \in \mathbb{R}^d} S_{\theta}(F_{\mathbf{k}}(w)) = \min_{w \in \mathbb{R}^d, \eta \in \mathbb{R}} \eta + \frac{1}{\theta} \sum_{i=1}^N \alpha_i \max(F_i(w) - \eta, 0)$$

$$+ \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$$

in $\eta + \frac{1}{\theta} \mathbb{E}[\max(U - \eta, 0)]$
 \mathbb{R}

10

An Alternating Minimization Scheme

We propose to alternatively minimise:

$$G: w, \eta \mapsto \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i \max(F_i(w) - \eta, 0)$$

ALTERNATING MINIMIZATION FOR $\Delta\text{-}\mathsf{FL}$

Starting point $w_0 \in \mathbb{R}^d$ Input Inexactness sequence $(\varepsilon_t)_{t \ge 0}$

• Time horizon $t^* \in \mathbb{N}$

for
$$t = 0, 1, \dots, t^{\star} - 1$$
 do

 $\eta_t \in \underset{\eta \in \mathbb{R}}{\operatorname{argmin}} G(w_t, \eta)$ $\eta \in \mathbb{R}$ $w_t \simeq \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} G(w, \eta_t) \text{ such that } \mathbb{E}[G(\eta_t)]$

return w_{t^\star}

$$[w_{t+1}, \eta_t)|w_t] - \min_{w \in \mathbb{R}^d} G(w, \eta_t) \le \varepsilon_t$$

An Alternating Minimization Scheme

We propose to alternatively minimise:

$$G: w, \eta \mapsto \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i \max(F_i(w) - \eta, 0)$$

ALTERNATING MINIMIZATION FOR Δ -FL • Starting point $w_0 \in \mathbb{R}^d$ • Inexactness sequence $(\varepsilon_t)_{t>0}$ Input • Time horizon $t^* \in \mathbb{N}$ for $t = 0, 1, \dots, t^{\star} - 1$ do $\eta_t \in \underset{\eta \in \mathbb{R}}{\operatorname{argmin}} G(w_t, \eta) \quad \text{(quantile computation)}$ $w_t \simeq \operatorname{argmin} G(w, \eta_t)$ such that $\mathbb{E}[G(w_t)]$ $w \in \mathbb{R}^d$ return w_{t^\star}

$$[w_{t+1}, \eta_t)|w_t] - \min_{w \in \mathbb{R}^d} G(w, \eta_t) \le \varepsilon_t$$

An Alternating Minimization Scheme

We propose to alternatively minimise:

$$G: w, \eta \mapsto \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i \max(F_i(w) - \eta, 0)$$

ALTERNATING MINIMIZATION FOR Δ -FL • Starting point $w_0 \in \mathbb{R}^d$ • Inexactness sequence $(\varepsilon_t)_{t>0}$ Input • Time horizon $t^* \in \mathbb{N}$ for $t = 0, 1, \dots, t^{\star} - 1$ do $\eta_t \in \underset{\eta \in \mathbb{R}}{\operatorname{argmin}} G(w_t, \eta) \quad \text{(quantile computation)}$ $w_t \simeq \operatorname{argmin} G(w, \eta_t)$ such that $\mathbb{E}[G(w, \eta_t)]$ $w \in \mathbb{R}^d$ return w_{t^\star}

$$[w_{t+1}, \eta_t)|w_t] - \min_{w \in \mathbb{R}^d} G(w, \eta_t) \le \varepsilon_t$$

(Mini-batch SGD) FedAvg

Convergence Result

Assumptions for Local SGD

The local losses F_i are convex *B*-Lipschitz and *L*-smooth

bounded variance σ_i^2 for the gradient with respect to w. Let $\sigma^2 = \alpha_1 \sigma_1^2 + \cdots + \alpha_N \sigma_N^2$

A last technical assumption [Koloskova et al. 2020]

$$\sum_{i=1}^{N} \alpha_i \left\| \frac{1}{\theta} \nabla_w h_{\nu}(F_k(w) - \eta) + \lambda w \right\|^2 \le D^2 + D_1 \left\| \nabla_w G(w, \eta) \right\|^2$$

Convergence Rate Result

Theorem

total number of T communication rounds to achieve \mathcal{E} accuracy with:

$$T = \mathcal{O}\left(\frac{\|\alpha\|_{\infty}\sigma^{2}\kappa^{2}}{\lambda\tau\varepsilon} + \sqrt{\frac{\sigma^{2}\kappa^{3}}{\lambda^{2}\tau\varepsilon}} + \sqrt{\frac{D^{2}\kappa^{4}}{\lambda\varepsilon}} + \kappa^{2}\right)$$

$$\widetilde{G}(w,\eta) = \eta + \frac{1}{\theta} \sum_{i=1}^{N} \alpha_i h_\nu (F_i(w) - \eta) + \frac{\lambda}{2} ||w||_2^2$$

We dispose of an unbiased stochastic first-order oracle for the composition $w, \eta \mapsto h_{\nu}(F_i(w) - \eta)$ with

Under above assumptions, when running local SGD with respect to W with τ local steps, we bound the

The practical algorithm on a picture

Data

The practical algorithm on a picture

The server broadcasts the model to a fleet of selected devices

• The practical algorithm on a picture

The server broadcasts the model to a fleet of selected devices

2

1

Each device compute a local loss with respect to its own data

• The practical algorithm on a picture

The server broadcasts the model to a fleet of selected devices

2

1

Each device compute a local loss with respect to its own data

The practical algorithm on a picture

The practical algorithm on a picture

Data

Experimental Setup

1091 roles

1346 tweets per devices

Language Modelling

SHAKESPEARE

RNN

Experimental Results - Final Performances

Distribution of final misclassification error

Distribution of final misclassification error for $\Delta\text{-}\mathrm{FL}$

Conclusion and Perspectives

- A new framework for statistical heterogeneous settings in
 Federated Learning, better suited for non-conforming users.
- We analysed the associated optimization algorithm and established bounds on the communication rounds it requires.
- We present numerical evidence in support of this framework.
- Paper recently published in the proceedings of the 55th Annual Conference on Information Sciences and Systems (CISS)
 - Link: <u>https://ieeexplore.ieee.org/abstract/document/9400318</u>

