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The -FL FrameworkΔ
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where

Superquantile loss

In -FL, we are using the superquantile at a user levelΔ

with
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For any random variable the superquantile of U is  

We propose to solve for a conformity parameter                :

(when )

U = E [Fk(w) | k] = E⇠⇠qk [f(w, ⇠)]
<latexit sha1_base64="G3BqRZKojDNp/Nv232DsBhLwq8g="></latexit>
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0  ⇡i
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 1/✓
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⇡1 + ⇡2 + ⇡3 = 1
<latexit sha1_base64="liT/RRbRCvxutzrNZfUVQ4gC0V0=">AAACAnicbVDLSsNAFL3xWesr6krcDBZBEErSCroRim5cVrAPaEOZTCft0MkkzEyEEoobf8WNC0Xc+hXu/BsnbRbaemC4h3Pu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6CbzWw9UKhaJez2OqRfigWABI1gbqWcfdmPWc9EZymolr1V0hdyeXXLKzhRokbg5KUGOes/+6vYjkoRUaMKxUh3XibWXYqkZ4XRS7CaKxpiM8IB2DBU4pMpLpydM0IlR+iiIpHlCo6n6eyLFoVLj0DedIdZDNe9l4n9eJ9HBpZcyESeaCjJbFCQc6QhleaA+k5RoPjYEE8nMXxEZYomJNqkVTQju/MmLpFkpu9Vy5e68VLvO4yjAERzDKbhwATW4hTo0gMAjPMMrvFlP1ov1bn3MWpesfOYA/sD6/AHXjZR/</latexit>
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Rockafellar’s Duality Result
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An Alternating Minimization Scheme

ALTERNATING MINIMIZATION FOR -FLΔ

Input
Starting point 
Inexactness sequence 
Time horizon 

for                                          do

such that 

return

(quantile computation)

(Mini-batch SGD)
FedAvg

We propose to alternatively minimise:
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Convergence Result

Under above assumptions, when running local SGD with respect to    with   local steps, we bound the 
total number of    communication rounds to achieve    accuracy with:

Theorem

17

Assumptions for Local SGD

Convergence Rate Result

The local losses     are convex B-Lipschitz and L-smooth

We dispose of an unbiased stochastic first-order oracle for the composition                                   with 
bounded variance     for the gradient with respect to w. Let

A last technical assumption [Koloskova et al. 2020]
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Experimental Setup

Datasets, Tasks and Models

EMNIST

Character Recognition

SHAKESPEARESENT140

ConvNet LSTM RNN

Regularized Logistic 
Regression

Regularized Logistic 
Regression

Sentiment Analysis Language Modelling

1730 writers 179 images 
per device

[Caldas et al. 2019]

877 accounts
69 tweets per 

devices
1091 roles 1346 tweets 

per devices



EMNIST

Distribution of final misclassification error

Experimental Results - Final Performances

Sent140 Shakespeare

Conformity level Conformity level Conformity level 

Distribution of final misclassification error for FedAvg

Distribution of final misclassification error for

10th percentile for FedAvg

10th percentile for

90th percentile for FedAvg
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Conclusion and Perspectives

31

A new framework for statistical heterogeneous settings in 
Federated Learning, better suited for non-conforming users.

We analysed the associated optimization algorithm and 
established bounds on the communication rounds it requires.

We present numerical evidence in support of this framework.

Paper recently published in the proceedings of the 55th Annual Conference 
on Information Sciences and Systems (CISS)

Link: https://ieeexplore.ieee.org/abstract/document/9400318

https://ieeexplore.ieee.org/abstract/document/9400318

