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B Modeling Heterogeneity on training devices

© We dispose of N training devices. m

@ Each training device is characterized by a distributio]r\lf q;

over some data space and a weight o; > 0 such that Z o, = 1
i=1

N
Base distribution p, = Z Q; q;
i=1

B Measuring conformity on testing devices

' We consider test devices to have a distribution that can be

written as a mixture of the training distributions.

N .
, 0<m. <1 foralll << N
Pr = (187 WEANlle{ N -
; 2 k=1 Tk = 1
® The conformity conf(p;) € |0, 1] of a mixture p; with weight 7 is defined as:
conf(p.) = min «;/m,
(Pr) ic{l,..N) i/

The conformity of a device refers to the conformity of its data distribution.
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B A-FL’s Objective
W We propose to solve for a conformity parameter § & (O, 1] : m

B ) = max B, |
min p(w) max enpr LS (W €>]_ where

A

 Data pata
Py :=4{m € Ay_1 : conf(p,) > 6} “pata
Superquantile loss \ /
 Data _

® For any random variable U : {2 — IR the superquantile of U is

N
Sy(U) = ESX.p ZmUi (When P[U — Ui] — CV@')
TE2N-1 =1

i =1l
OS%SQ

W In A-FL, we are using the superquantile at a user level

U =E[Fk(w) | k| = E¢ug, [f(w, )] with Pk =1] = q;

Fy(w) = Sp(Fr(w))
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Rockafellar's Duality Result

B A Duality Result for superquantiles

[Rockafellar 2000’

= For any 0 & (0, 1], and any discrete random variable U,

S@(U) — minn-l— -

(p(U) = argmin ) + -

=1-—40

1

neR v

necR
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Rockafellar's Duality Result

B A Duality Result for superquantiles | [Rockafellar 20007]

= For any 0 & (0, 1], and any discrete random variable U,

Se(U) = minn + . Cmax(U — n,0)]
neR v
1
Qp(U) = argmin  + £ E[max(U — n,0)
neR 0

=1-—40

o In our case, we can rewrite A-FL’s objective as a joint minimization problem:

N
1
min Fp(w) = min Sp(Fx(w)) = min n+ 7 Z a; max(Fy(w) —n,0)
i=1

weRd weRd weR? neR
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An Alternating Minimization Scheme

We propose to alternatively minimise:

N
1
G:w,an—FgZaimax(Fi(w) —n,0)

=1

ALTERNATING MINIMIZATION FOR A-FL

= Starting point wy € R*

Input ® Inexactness sequence <5t)t20
# Time horizon t* € N

for t=0,1,...,t"—1 do

n; € argmin G(wy, n)

neR
wy ~ argmin G(w,n:) such that E[G(wi1,n:)|w] — min G(w,n) < &
w € R weR

return W
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Convergence Result

B Assumptions for Local SGD

M The local losses F; are convex B-Lipschitz and L-smooth

W We dispose of an unbiased stochastic first-order oracle for the composition w,n +> h, (F;(w) — 1) with

bounded variance 02.2 for the gradient with respect to w. Let 0% = oy 0% + -+ oan 0]2\,

B A last technical assumption | [Koloskova et al. 2020]
N

> o

1=1

2

1
-V, hy (Fi(w) — 1) + w| < D*+ Dy |V,,G(w,n)|

0

B Convergence Rate Result

Theorem

Under above assumptions, when running local SGD with respect toW with 7 local steps, we bound the

total number of 7' communication rounds to achieve & accuracy with:

||| oo K2 o2k3 \/D%‘l )
T'=0 | | |
( ATE A%Te AE 8
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Practical Implementation

B The practical algorithm on a picture

@ The server broadcasts the model m
to a fleet of selected devices

@ Each device compute a local loss
with respect to its own data
a . : : B
Only devices with a high enough

@ loss run local SGD for a fixed m

number of steps.

k j
@ The server performs a secure
average of the updated models m

Sec.Agg.

o
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Experimental Setup

B Datasets, Tasks and Models | [Caldas et al. 2019]

1730 writers | ° [88es 877 accounts 00 LVeets per 1001 roles 1346 twveets
per device devices per devices
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Experimental Results - Final Performances

B Distribution of final misclassification error
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Conclusion and Perspectives

B A new framework for statistical heterogeneous settings in

Federated Learning, better suited for non-conforming users.

B We analysed the associated optimization algorithm and

established bounds on the communication rounds it requires.

B We present numerical evidence in support of this framework.

© Paper recently published in the proceedings of the 55th Annual Conference

on Information Sciences and Systems (CISS)

Link: https://ieeexplore.ieee.org/abstract /document /9400318
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