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Abstract
Decentralized stochastic optimization methods
have gained a lot of attention recently, mainly
because of their cheap per iteration cost, data lo-
cality, and their communication-efficiency. In this
paper we introduce a unified convergence analysis
that covers a large variety of decentralized SGD
methods which so far have required different in-
tuitions, have different applications, and which
have been developed separately in various com-
munities.
Our algorithmic framework covers local SGD up-
dates and synchronous and pairwise gossip up-
dates on adaptive network topology. We derive
universal convergence rates for smooth (convex
and non-convex) problems and the rates interpo-
late between the heterogeneous (non-identically
distributed data) and iid-data settings, recovering
linear convergence rates in many special cases,
for instance for over-parametrized models. Our
proofs rely on weak assumptions (typically im-
proving over prior work in several aspects) and
recover (and improve) the best known complex-
ity results for a host of important scenarios, such
as for instance coorperative SGD and federated
averaging (local SGD).

1. Introduction
Training machine learning models in a non-centralized
fashion can offer many advantages over traditional central-
ized approaches in core aspects such as data ownership,
privacy, fault tolerance and scalability. In efforts to depart
from the traditional parameter server paradigm (Dean et al.,
2012), federated learning (Konečnỳ et al., 2016; McMahan
et al., 2016; 2017; Kairouz et al., 2019) has emerged, but
also fully decentralized approaches have been suggested
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recently—though yet still at a smaller scale than federated
learning (Lian et al., 2017; Assran et al., 2019; Koloskova
et al., 2020). However, the community has identified a host
of challenges that come along with decentralized training:
notably, high communication cost (Tang et al., 2018a; Wang
et al., 2019; Koloskova et al., 2019), a need for time-varying
topologies (Nedić & Olshevsky, 2014; Assran et al., 2019)
and data-heterogeneity (Li et al., 2018; Karimireddy
et al., 2019; Li et al., 2020a;b). It is imperative to have a
good theoretical understanding of decentralized stochastic
gradient descent (SGD) to predict the training performance
of SGD in these scenarios and to assist the design of optimal
decentralized training schemes for machine learning tasks.

In contrast to the centralized setting, where the conver-
gence of SGD is well understood (Bach & Moulines, 2011;
Rakhlin et al., 2012; Dekel et al., 2012), the analyses of SGD
in non-centralized settings are often application specific
and have been historically developed separately in different
communities, besides some recent efforts towards a unified
theory. Notably, Wang & Joshi (2018) propose a framework
for decentralized optimization with non-heterogeneous data
and Li et al. (2019) study decentralized SGD for non-convex
heterogeneous settings. We here propose a significantly ex-
tended framework that covers these previously proposed
ones as special cases.

We provide tight convergence rates for a large family of
decentralized SGD variants. Proving convergence rates in
a unified framework is much more powerful than studying
individual special cases on their own: We are not only able
to recover many existing analyses and results, we can also
often show improved rates under more general setting. Re-
markably, for instance for local SGD (Zinkevich et al., 2010;
Stich, 2019b; Patel & Dieuleveut, 2019) we show improved
rates for the convex and strongly-convex case and recover
the best known rates for the non-convex case under weaker
assumptions than assumed in prior work (highlighted in
Table 1).

1.1. Contributions

• We present a unified framework for gossip based decen-
tralized SGD methods that captures local updates and
time-varying, randomly sampled, mixing distributions.
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Our framework covers a rich class of methods that
previously needed individual convergence analyses.

• Our theoretical results rely on weak assumptions that
measure the strength of the noise and the dissimilarity
of the functions between workers and a novel assump-
tion on the expected mixing rate of the gossip algo-
rithm. This provides us with great flexibility on how
to select the topology of the network and the mixing
weights.

• We demonstrate the effectiveness and tightness of our
results by exemplary showing that our framework gives
the best convergence rates for local SGD for both, het-
erogeneous and iid. data settings, improving over all
previous analyses on convex functions.

• We provide a lower bound that confirms that our con-
vergence rates are tight on strongly convex functions.

• We empirically verify the tightness of our theoretical
results on strongly convex functions and explain the
impact of noise and data diversity on the convergence.

2. Related Work
The study of decentralized optimization algorithms can be
tracked back at least to (Tsitsiklis, 1984). For the problem
of computing aggregates (finding consensus) among clients,
various gossip-based protocols have been proposed. For
instance the push-sum algorithm (Kempe et al., 2003),
based on the intuition of mixing in Markov chains and
allowing for asymmetric communication, or the symmetric
randomized gossip protocol for averaging over arbirary
graphs (Xiao & Boyd, 2004; Boyd et al., 2006) that we
follow closely in this work. For general optimization
problems, the most common algorithms are either combina-
tions of standard gradient based methods with gossip-type
averaging step (Nedić & Ozdaglar, 2009; Johansson
et al., 2010), or specifically designed methods relying on
problem structure, such as alternating direction method of
multipliers (ADMM) (Wei & Ozdaglar, 2012; Iutzeler et al.,
2013), dual averaging (Duchi et al., 2012; Nedić et al.,
2015; Rabbat, 2015), primal-dual methods (Alghunaim &
Sayed, 2020), or block-coordinate methods for generalized
linear models (He et al., 2018). There is a rich literature
in the control community that discusses various special
cases—motivated by particular applications—such as for
instance asynchronity (Boyd et al., 2006) or time-varying
graphs (Nedić & Olshevsky, 2014; Nedić & Olshevsky,
2016), see also (Nedić et al., 2018) for an overview.

For the deterministic (non-stochastic) descentralized opti-
mization a recent line of work developed optimal algorithms
based on acceleration (Jakovetić et al., 2014; Scaman et al.,

2017; 2018; Uribe et al., 2018). In the machine learning con-
text, decentralized implementations of stochastic gradient
descent have gained a lot of attention recently (Lian et al.,
2017; Tang et al., 2018b; Assran et al., 2019; Koloskova
et al., 2020), especially for the particular (but not fully de-
centralized) case of a star-shaped network topology, the
federated learning setting (Konečnỳ et al., 2016; McMa-
han et al., 2016; 2017; Kairouz et al., 2019). Rates for the
stochastic optimization are derived in (Shamir & Srebro,
2014; Rabbat, 2015), under the assumption that the distribu-
tions on all nodes are equal. However, this is a very strong
assumption for practical problems.

It has been noted quite early that decentralized gradient
based methods in heterogenous data setting suffer from
a ‘client-drift’, i.e. the diversity in the functions on each
node leads to a drift on each client towards the minima
of fi—potentially far away from the global minima of f .
This phenomena has been discussed (and sometimes been
adressed by modifing the SGD updates) for example in (Shi
et al., 2015; Lee et al., 2015; Nedić et al., 2016) and been
rediscovered frequently in the context of stochastic opti-
mization (Zhao et al., 2018; Karimireddy et al., 2019). It
is important to note that in analyses based on the bounded
gradient assumption—which was traditionally assumend for
analyzing SGD (Lacoste-Julien et al., 2012; Rakhlin et al.,
2012)—the diversity in the data distribution on each worker
sometimes can be hidden in this generous upper bound and
the analyses cannot distinguish between iid. and non-iid.
data cases, such as e.g. in (Koloskova et al., 2019; Nadi-
radze et al., 2019; Li et al., 2020b). In this work, we use
much weaker assumptions and we show how the conver-
gence rate depends on the similarity between the functions
(by providing matching lower and upper bounds). Our re-
sults show that in overparametrized settings no drift effects
occur and linear convergence can be achieved similar as to
the centralized setting (Schmidt & Roux, 2013; Needell
et al., 2016; Ma et al., 2018).

For reducing communication cost, various techniques have
been proposed. In this work we do not consider gradi-
ent compression techniques (Alistarh et al., 2017; Stich
et al., 2018; Tang et al., 2018a; 2019; Stich & Karimireddy,
2019)—but such orthogonal techniques could be added on
top of our scheme—and instead only focus on local updates
steps which are often efficient in practice but challenging
to handle in the theoretical analysis (McMahan et al., 2017;
Stich, 2019b; Yu et al., 2019; Lin et al., 2020).

3. Setup
We study the distributed stochastic optimization problem

f? := min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
(1)
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where the components fi : Rd → R are distributed among n
nodes and are given in stochastic form:

fi(x) := Eξi∼Di Fi(x, ξi), (2)

where Di denotes the distribution of ξi over parameter
space Ωi on node i. Standard empirical risk minimization
is an important special case of this problem, when each Di
presents a finite number mi of elements {ξ1

i , . . . , ξ
mi
i }.

Then fi can be rewritten as fi(x) = 1
mi

∑mi
j=1 Fi(x, ξ

j
i ).

In the special case of mi = 1, for each i ∈ [n], we further
recover the deterministic distributed optimization problem.

It is important to note that we do not make any assump-
tions on the distributions Di. This means that we especially
cover hard heterogeneous machine learning problems where
data is only available locally to each worker i ∈ [n] :=
{1, . . . , n} and the local minima x?i := arg minx∈Rd fi(x),
can be far away from the global minimizer of (1). This
covers a host of practically relevant problems over decen-
tralized training data, as in federated learning (motivated
by privacy), or large datasets stored across datacenters or
devices (motivated by scalability). We will discuss several
important examples in Section 3.2 below.

3.1. Assumptions on the objective function f

For all our theoretical results we assume that f is smooth.

Assumption 1a (L-smoothness). Each function
Fi(x, ξ) : Rd × Ωi → R, i ∈ [n] is differentiable
for each ξ ∈ supp(Di) and there exists a constant L ≥ 0
such that for each x,y ∈ Rd, ξ ∈ supp(Di):

‖∇Fi(y, ξ)−∇Fi(x, ξ)‖ ≤ L ‖x− y‖ . (3)

Sometimes it will be enough to just assume smoothness of
fi instead.

Assumption 1b (L-smoothness). Each function
fi(x) : Rd → R, i ∈ [n] is differentiable and there
exists a constant L ≥ 0 such that for each x,y ∈ Rd:

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x− y‖ . (4)

Remark 1. Clearly, Assumption 1b is more general than As-
sumption 1a. Moreover, for convex F (y, ξ) Assumption 1a
implies Assumption 1b (Nesterov, 2004).

Assumption 1b is quite common in the literature (e.g. (Lian
et al., 2017; Wang & Joshi, 2018)) but sometimes also the
stronger Assumption 1a is assumed (Nguyen et al., 2018).
We here use this version in the convex case only, to allow
for a more general assumption on the noise instead (see
Section 3.2 below).

For some of the derived results we need in addition convex-
ity. Specifically, µ-convexity for a parameter µ ≥ 0.

Assumption 2 (µ-convexity). Each function fi : Rd → R,
i ∈ [n] is µ-(strongly) convex for constant µ ≥ 0. That is,
for all x,y ∈ Rd:

fi(x)− fi(y) +
µ

2
‖x− y‖22 ≤ 〈∇fi(x),x− y〉 . (5)

3.2. Assumptions on the noise

We now formulate our conditions on the noise. For the
convergence analysis of SGD on smooth convex functions
it is typically enough to assume a bound on the noise at
the optimum only (Needell et al., 2016; Bottou et al., 2018;
Gower et al., 2019; Stich, 2019a). Similarly, to express
the diversity of the functions fi in the convex case it is
sufficient to measure it only at the optimal point x? (such a
point always exists for strongly convex functions).

Assumption 3a (Bounded noise at the optimum). Let x? =
arg min f(x) and define

ζ2
i := ‖∇fi(x?)‖22 , ζ̄2 := 1

n

∑n
i=1 ζ

2
i . (6)

Further, define

σ2
i := Eξi ‖∇Fi(x?, ξi)−∇fi(x?)‖

2
2 (7)

and similarly as above, σ̄2 := 1
n

∑n
i=1 σ

2
i . We assume that

σ̄2 and ζ̄2 are bounded.

Here, σ̄2 measures the noise level, and ζ̄2 the diversity of
the functions fi. If all functions are identical, fi = fj ,
for all i, j, then ζ̄2 = 0. Many prior work in the con-
text of stochastic decentralized optimization often assumed
bounded diversity and bounded noise everywhere (such as
e.g. (Lian et al., 2017; Tang et al., 2018b)), whereas we here
only need to assume this bound locally at x?.

For the non-convex case—where a unique x? does not nec-
essarily exist—we generalize Assumption 3a to:

Assumption 3b (Bounded noise). We assume that there
exists constants P , ζ̂ such that ∀x ∈ Rd,

1
n

∑n
i=1 ‖∇fi(x)‖22 ≤ ζ̂2 + P ‖∇f(x)‖22 (8)

and constants M , σ̂ such that ∀x1, . . .xn ∈ Rd

Ψ ≤ σ̂2 + M
n

∑n
i=1 ‖∇f(xi)‖22 (9)

where Ψ := 1
n

∑n
i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖

2
2.

We see that Assumption 3a is weaker than Assumption 3b as
it only needs ho hold for xi = x?. Further, it is important to
note that we do not assume a uniform bound on the variance
(as many prior work, such as Li et al., 2019; Tang et al.,
2018b; Lian et al., 2017; Assran et al., 2019) but instead
allow the bound on the noise and the diversity to grow with
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the gradient norm (similar assumptions are common in the
convex setting (Bottou et al., 2018)).

Discussion. We now show that the Assumption 3b is weaker
than assuming a uniform upper bound on the noise. The
uniform variance bound is given as

E ‖∇Fi(x, ξi)−∇fi(x)‖22 ≤ σ
2
unif , ∀x ∈ Rd

similarly for the similarity of functions between nodes

1
n

∑n
i=1 E ‖∇fi(x)−∇f(x)‖22 ≤ ζ̄

2
unif , ∀x ∈ Rd .

By recalling the inequality ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2
for a,b ∈ Rd, it is easy to check that these two bounds
imply Assumption 3b with B = 2, M = 0, σ̂2 = σ2

unif and
ζ̂2 = 2ζ̄2

unif . Thus, our assumptions are weaker and ζ̂ and σ̂
can be much smaller than ζ̄2

unif , σ
2
unif in general.

A second common assumption is to assume that the (stochas-
tic) gradients are uniformly bounded (e.g. Koloskova et al.,
2019; Li et al., 2020b), that is

E ‖∇Fi(x, ξi)‖22 ≤ G
2 ,

for a constant G. Under the bounded gradient assumption,
Assumption 3b is clearly satisfied, as all terms on the left
hand side of (8) and (9) can be upper bounded by 2G2.

3.3. Notation

We use the notation x
(t)
i to denote the iterates on node i at

time step t. We further define the average

x̄(t) := 1
n

∑n
i=1 x

(t)
i . (10)

We use both vector and matrix notation whenever it is more
convenient, and define

X(t) :=
[
x

(t)
1 , . . . ,x(t)

n

]
∈ Rd×n (11)

and likewise define X̄(t) :=
[
x̄(t), . . . , x̄(t)

]
≡ X(t) 1

n11
>.

4. Decentralized (Gossip) SGD
We now present the generalized decentralized SGD frame-
work. Similar to existing works (Lian et al., 2017; Wang
& Joshi, 2018; Li et al., 2019) our proposed method allows
only decentralized communications. That is, the exchange
of information (through gossip averaging) can only occur
between connected nodes (neighbors). The algorithm (out-
lined in Algorithm 1) consists of two phases: (i) stochastic
gradient updates, performed locally on each worker (lines
4–5), followed by a (ii) consensus operation, where nodes
average their values with their neighbors (line 6).

The gossip averaging protocol can be compactly written in
matrix notation, with N (t)

i := {j : w
(t)
ij > 0} denoting the

neighbors of node i at iteration t:

X(t+1) = X(t)W (t) ⇔ x
(t+1)
i =

∑
j∈N (t)

i
w

(t)
ij x

(t)
j ,

where the mixing matrix W (t) ∈ [0, 1]n×n encodes the
network structure at time t and the averaging weights (nodes
i and j are connected if w(t)

ij > 0).

Our scheme shows great flexibility as the mixing matrices
can change over iterations and moreover can be selected
from (changing) distributions.

Definition 1 (Mixing matrix). A symmetric (W =W>) dou-
bly stochastic (W1=1, 1>W =1>) matrix W ∈ [0, 1]n×n.

4.1. Algorithm

Algorithm 1 DECENTRALIZED SGD

input for each node i ∈ [n] initialize x
(0)
i ∈ Rd,

stepsizes {ηt}T−1
t=0 , number of iterations T ,

mixing matrix distributionsW(t) for t ∈ [0, T ]
1: for t in 0 . . . T do
2: Sample W (t) ∼ W(t)

3: In parallel (task for worker i, i ∈ [n])
4: Sample ξ(t)

i , compute g
(t)
i := ∇Fi(x(t)

i , ξ
(t)
i )

5: x
(t+ 1

2 )
i = x

(t)
i − ηtg

(t)
i . stochastic gradient updates

6: x
(t+1)
i :=

∑
j∈N ti

w
(t)
ij x

(t+ 1
2 )

j . gossip averaging
7: end for

In each iteration in Algorithm 1 a new mixing matrix W (t)

is sampled from a possibly time-varying distributionW(t),
t ∈ {0, . . . , T} (we will show below that also degenerate
mixing matrices, for instance W (t) = In which implies no
communication in round t, are possible choices). We will
discuss several important instances below, but first we now
state our assumption on the quality of the mixing matrices.
This assumption is novel in the literature to the best of our
knowledge and a natural generalization of earlier versions.

4.2. New assumption on mixing matrices

We recall that for randomized gossip averaging with a ran-
domly sampled mixing matrix W ∼ W it holds

EW
∥∥XW − X̄∥∥2

F
≤ (1− p)

∥∥X − X̄∥∥2

F
, (12)

for a value p ≥ 0 (related to the spectrum of EW>W ), that
is, the averaging step brings the values in the columns of
X ∈ Rd×n closer to their row-wise average X̄ := X · 1n11

>

in expectation (see e.g. Boyd et al., 2006).

In our analysis it will be enough to assume that a property
similar to (12) holds for the composition of mixing matrixes,
and does not necessarily hold for every single step.
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Assumption 4 (Expected Consensus Rate). We assume that
there exists two constants p ∈ (0, 1] and integer τ ≥ 1
such that for all matrices X ∈ Rd×n and all integers ` ∈
{0, . . . , T/τ},

EW
∥∥XW`,τ − X̄

∥∥2

F
≤ (1− p)

∥∥X − X̄∥∥2

F
, (13)

where W`,τ = W ((`+1)τ−1) · · ·W (`τ) and X̄ := X 11>

n

and E is taken over the distributions W (t) ∼ W(t) and
indices t ∈ {`τ, . . . , (`+ 1)τ − 1}.

It is crucial to observe that this assumption does not require
every realization W to satisfy a decrease property as for
the standard analysis, it is enough if it holds over the
concatenation of τ mixing steps. This assumption differs
from the connectivity assumptions sometimes used in
the control community. For example Nedić & Olshevsky
(2014) require strong connectivity of the graph after every
τ steps, whereas we here do not require this (for example,
even sampling one single random edge leads to a positive
decrease in expectation, whereas to ensure connectivity one
would need to perform Ω(n) pairwise communications).
This means that our bounds are typically much tighter
that bounds derived on the strong connectivity assumption.
However, as we require W to be symmetric, our setting
is less general than the one considered in (Nedić et al.,
2017; Xi & Khan, 2017; Saadatniaki et al., 2018; Assran
& Rabbat, 2018; Scutari & Sun, 2019; Assran et al., 2019).

Commonly used weights are for instance the Metropolis-
Hastings weights wij = wji = min{ 1

deg(i)+1 ,
1

deg(j)+1}
for (i, j) ∈ E, see also (Xiao & Boyd, 2004; Boyd et al.,
2006) for further guidelines. With these weights, the values
of p for commonly used graphs are p = 1 for the complete
graph, p = Θ

(
1
n

)
for 2-d torus on n nodes, and p = Θ

(
1
n2

)
for a cycle on n nodes. Intuitively, p−1/2 correlates with the
diameter of the graph and is related to the mixing time of
Markov chains. A commonly studied randomized scheme
is the pairwise random gossip algorithm (Boyd et al., 2006;
Loizou & Richtárik, 2019), where one edge at a time is
sampled from an underlying graph G = ([n], E), i.e. the a
random mixing matrix Zi,j := In− 1

2 (ei−ej)(ei−ej)>, for
all edges in the graph (i, j) ∈ E, where ei ∈ Rn is the ith

coordinate vector. In this case p = ρ(G)/|E|, where ρ(G)
denotes the algebraic connectivity of the network (Fiedler,
1973; Boyd et al., 2006; Loizou & Richtárik, 2016). For
example, with the complete graph as base graph, pairwise
gossip attains p = Θ

(
1
n2

)
, i.e. enjoys equally fast mixing

as averaging over a (fixed) cycle (which requires n pairwise
communications per round).

5. Examples Covered in the Framework
Our framework is very general and covers many special
cases previously introduced in the literature.

5.1. Fixed Sampling Distribution (τ = 1,W(t) ≡ W)

The simplest instances of Algorithm 1 arise when the mixing
matrix W is kept constant over the iterations. By choos-
ing the fully connected matrix W = 1

n11
> we recover

• centralized mini-batch SGD (Dekel et al., 2012) and by
choosing an arbitrary connected W , we recover • decen-
tralized SGD (Lian et al., 2017).

To reduce communication overheads, it has been proposed
to choose sparse (not necessarily connected) subgraphs of
the network topology. For instance in •MATCHA (Wang
et al., 2019) it is proposed to sample edges from a matching
decomposition of the underlying network topology, there-
fore allowing for pairwise communications between nodes.
Whilst no explicit values of p were given for this approach,
for the simpler instance of • pairwise randomized gos-
sip (Boyd et al., 2006; Ram et al., 2010; Lee & Nedić, 2015;
Loizou & Richtárik, 2019) we have p = Θ

(
1
n2

)
, thus by

sampling a linear number of (independent) edges—not nec-
essarily a matching—we approximately have p = Θ

(
1
n

)
for

this • repeated pairwise randomized gossip variant (and
expect roughly the same parameter for matchings). This
approach can be generalized to • randomized subgraph
gossip, where a subgraph of the base topology is selected
for averaging. A special case of this is • clique gossip
(Liu et al., 2019), or an alternative variant is to • sample
from a fixed set of communication topologies (known to
all decentralized) workers.

One noteably instance of this type is • loopless local de-
centralized SGD where the mixing matrix is (a fixed) W
with probability 1

τ , and In with probability 1 − 1
τ , for a

parameter τ ≥ 1. This algorithm mimicks the behavior of
the local SGD (see subsection below), commonly analyzed
forW = 1

n11
> only, but the loopless variant is much easier

to analyze (with p decreased by a factor of τ ).

5.2. Periodic Sampling (τ > 1,W(t) ≡ W(t+τ))

Our analysis covers the empirical (finite-sample) versions
of the aforementioned algorithms, for instance • alternat-
ing decentralized SGD that sweeps through τ fixed mix-
ing matrices. A special algorithm of this type is • local
SGD (Coppola, 2015; Zhou & Cong, 2018; Stich, 2019b)
where averaging on the complete graph is performed every
τ iterations and only local steps are performed otherwise
(mixing matrix In for τ − 1 steps).

Our analysis covers also natural extensions such as • de-
centralized local SGD where mixing is performed with
an arbitrary matrix W , and • random decentralized local
SGD where the mixing matrix is sampled from a distribu-
tion. More generally, our framework also allows to combine
local steps with all of the examples described in the previous
section.
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5.3. Non-Periodic Sampling

It is not necessary to have a periodic structure, it is suffi-
cient that the composition of every τ consecutive mixing
matrixes satisfies Assumption 4. For instance as in • dis-
triributed SGD over time-varying graphs (Nedić & Ol-
shevsky, 2014).

5.4. Other Frameworks

In contrast to many prior works, we here allow the topology
and the averaging weights to change between iterations.
Our framework covers • Cooperative SGD (Wang & Joshi,
2018) which considers only the IID data case (fi = fj) with
local updates and a fixed mixing matrix W , and the recently
proposed • periodic decentralized SGD (Li et al., 2019)
that allows for multiple local update and multiple mixing
steps (for fixed W ) in a periodic manner. None of these
work considered sampling of the mixing matrix and do only
provide rates for non-convex functions.

6. Convergence Result
In this section we present the convergence results for decen-
tralized SGD variants that fit the template of Algorithm 1.

6.1. Complexity Estimates (Upper Bounds)

Theorem 2. For schemes as in Algorithm 1 with mixing
matrices such as in Assumption 4 and any target accuracy
ε > 0 there exists a (constant) stepsize (potentially depend-
ing on ε) such that the accuracy can be reached after at
most the following number of iterations T :
Non-Convex: Under Assumption 1b and 3b, it holds

1
T+1

∑T
t=0 E

∥∥∇f(x̄(t))
∥∥2

2
≤ ε after

O

(
σ̂2

nε2
+
ζ̂τ
√
M + 1 + σ̂

√
pτ

pε3/2
+
τ
√

(P + 1)(M + 1)

pε

)
· LF0

iterations. If we in addition assume convexity,
Convex: Under Assumption 1a, 3a and 2 for µ ≥ 0, the
error 1

(T+1)

∑T
t=0(E f(x̄(t))− f?) ≤ ε after

O

(
σ̄2

nε2
+

√
L(ζ̄τ + σ̄

√
pτ)

pε3/2
+
Lτ

pε

)
·R2

0

iterations, and if µ > 0,
Strongly-Convex: then

∑T
t=0

wt
WT

(E f(x̄(t)) − f?) +

µE ‖x̄(T+1) − x?‖2 ≤ ε for1

Õ

(
σ̄2

µnε
+

√
L(ζ̄τ + σ̄

√
pτ)

µp
√
ε

+
Lτ

µp

)
1Õ/Ω̃-notation hides constants and polylogarithmic factors.

iterations, for positive weights wt and F0 := f(x0) − f?
and R0 = ‖x0 − x?‖ denote the initial errors.

6.2. Lower Bound

We now show that the terms depending on ζ̄ are necessary
for the strongly convex setting and cannot be removed by
an improved analysis.

Theorem 3. For n > 1 there exists strongly convex and
smooth functions fi : Rd → R, i ∈ [n] with L = µ = 1 and
without stochastic noise (σ̄2 = 0), such that Algorithm 1 for
every constant mixing matrix W (t) ≡ W with p < 1 (see
Assumption 4), hence with τ = 1, requires

T = Ω̃

(
ζ̄√
εp

)
iterations to converge to accuracy ε.

6.3. Discussion

Exemplary, we focus in our discussion on the strongly con-
vex case only. For strongly convex functions we prove that
the expected function value suboptimality decreases as

Õ
(
σ̄2

nµT
+
L(τ2ζ̄2 + τpσ̄2)

µ2p2T 2
+
LτR2

0

p
exp

[
−µTp
τL

])
where T denotes the iteration counter. We now argue that
this rate is optimal up to acceleration.

Stochastic Terms. If σ̄2 > 0 the convergence rate is asymp-
totically dominated by the first term, which cannot be fur-
ther improved for stochastic methods (Nemirovsky & Yudin,
1983). We observe that the dominating first term indicates a
linear speedup in the number of workers n, and no depen-
dence on the number of local steps τ , the mixing parameter
p or the dissimilarity parameter ζ̄2. This means that decen-
tralized SGD methods are ideal for the optimization in the
high-noise regime even when network connectivity is low
and number of local steps is large (see also (Chaturapruek
et al., 2015) and recent work (Pu et al., 2019)). In our rates
the variance σ̄2 does also show up in the second term, but
affects the convergence only mildly (for T = Ω(τn/p) this
second term gets dominated by the first one).

Optimization Terms. Even when σ̄2 = 0, the convergence
of decentralized SGD only sublinear when ζ̄2 > 0:2

O
(
Lτ2ζ̄2

µ2p2T 2
+
LτR0

µp
log

(
1

ε

))
.

The dependence on the dissimilarity ζ̄2 cannot be removed
in general as we show in Theorem 3. These results show

2Except for the special case when p = 1 (fully connected
graph, such as for mini-batch SGD). In this case the rate does not
depend on ζ̄2. We detail this (known result) in the appendix.
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Table 1. Comparison of convergence rates for Local SGD in non-iid settings, most recent results. We improve over the convex results, and
recover the non-convex rate of Li et al. (2019).

Reference convergence to ε-accuracy

strongly convex convex non-convex

Li et al. (2020b) O
(

σ̄2

nµ2ε + τ2ζ̄2

µ2ε

)
a - -

Khaled et al. (2020) - O
(
σ̄2+ζ̄2

nε2 +
√
Lτ(ζ̄+σ̄)
ε3/2

+ Lτ
ε

)
-

Li et al. (2019) - - O
(
Lσ̄2

nε2 + L(τζ̄+
√
τσ̄)

ε3/2
+ Lτ

ε

)
this work Õ

(
σ̄2

nµε +
√
L(τζ̄+

√
τσ̄)

µ
√
ε

+ κτ
)

O
(
σ̄2

nε2 +
√
L(τζ̄+

√
τσ̄)

ε3/2
+ Lτ

ε

)
O
(
Lσ̂2

nε2 + L(τζ̂+
√
τσ̂)

ε3/2
+ Lτ

ε

)
aThe paper relies on slightly different assumptions (bounded gradients and different measure of dissimilarity). For better comparison

of the rates we write here ζ̄2 instead (which is strictly smaller than their parameter).

that decentralized SGD methods without additional modifi-
cations (see also Shi et al., 2015; Karimireddy et al., 2019)
cannot converge linearly.

We can further observe see that the rates only depend on the
ratio p/τ , but not on p or τ individually. This also means
that the rates for local variants of decentralized SGD are
the same as for their loopless variants (when the mixing is
performed with probability 1

τ only). The error term depend-
ing on R2

0 vanishes exponentially fast, as expected for SGD
methods (Bach & Moulines, 2011). The linear dependence
on L

µp is expected here, as we use non-accelerated first order
schemes and standard gossip. This term could potentially be
improved to

(
L
µp

)1/2
with acceleration techniques, such as

in (Scaman et al., 2017). The linear dependence on τ cannot
further be improved in general. This follows from the lower
bound for the communication complexity of distributed con-
vex optimization (Arjevani & Shamir, 2015), as the number
of communication rounds is at most Tτ (no communication
happens during the local steps). However, when ζ̄2 = 0
(as for instance the case for identical functions fi on each
worker), this lower bound becomes vacuous and improve-
ment of the dependence on τ might be possible (which we
cannot not exploit here).

Linear Convergence for Overparametrized Settings.
In overparametrized problems, there exists always x? s.t.
‖∇fi(x?)‖2 = 0, that is σ̄2 = 0 and ζ̄2 = 0. We prove here
that decentralized SGD converges linearly in this case, simi-
larly to mini-batch SGD (Bach & Moulines, 2011; Schmidt
& Roux, 2013; Needell et al., 2016; Ma et al., 2018; Gower
et al., 2019; Loizou et al., 2020).

7. Special Cases: Highlights
Our rates apply to all the examples discussed in Section 5
and of course we could design even more variants and com-
binations of these schemes. This gives great flexibility in
designing new schemes and algorithms for future applica-

tions. We leave the exploration of the trade-offs in these
approaches for future work, and highlight here only a few
special cases that could be of particular interest.

7.1. Best Rates for Local SGD

Local SGD is a simplified version of the federated averaging
algorithm (McMahan et al., 2016; 2017) and has recently
attracted the attention of the theoretical community in the
seek of the best convergence rates (Stich, 2019b; Wang
& Joshi, 2018; Yu et al., 2019; Basu et al., 2019; Patel &
Dieuleveut, 2019; Stich & Karimireddy, 2019; Li et al.,
2019; Khaled et al., 2020). Our work extends this chain
and improves previous best results for convex settings and
recovers the results of Li et al. (2019) in the non-convex
case as we highlight in Table 1. We point out that all these
rates are still dominated by large-batch SGD and do not
match the lower bounds established in (Woodworth et al.,
2018) (for the iid. case ζ̄2 = 0). See also recent parallel
work in (Woodworth et al., 2020). Whilst these previous
analysis were often specifically tailored and only applicable
to the mixing structure in local SGD, our analysis is much
more general and tighter at the same time.

7.2. Comparison to Recent Frameworks

We mentioned major differences to other frameworks in
Section 5.4 above already. Our results for the non-convex
case recover the best results from (Wang & Joshi, 2018) for
the iid. case3 (ζ̂2 = 0) and the non-iid. case from (Li et al.,
2019) for their specific settings. We point out that our results
also cover the convex setting and deterministic setting.

3 These results can be recovered by optimizing the stepsize
in (Wang & Joshi, 2018, Theorem 1) directly, instead of resorting
to the worse rate stated in (Wang & Joshi, 2018, Corollary 1).
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2
to target accuracy ε = 10−5 for different problem difficulty (σ̄2 increasing to the bottom,

ζ̄2 increasing to the right), and different topologies on n = 25 nodes, d = 50. Stepsizes were tuned for each experiment individually to
reach target accuracy in as few iterations as possible.

7.3. Best Rates for Decentralized SGD

We improve best known rates of Decentralized SGD (Ol-
shevsky et al., 2019; Koloskova et al., 2019) for strongly
convex objectives and recover the best rates in the non-
convex case (Lian et al., 2017).

8. Experiments
Complementing prior work that established the effective-
ness of decentralized training methods (Lian et al., 2017;
Assran et al., 2019) we here focus on verifying whether the
numerical performance of decentralized stochastic optimiza-
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Figure 2. Problem setup. Parameters σ̄2 and ζ̄2 change the
noise level and the difficulty of the problem. (Here we depict
1
n

∑n
i=1

∥∥x(t)
i − x?

∥∥2

2
on the ring with n = 25 nodes, d = 10,

using fixed stepsize η = 10−2 for illustration.

tion algorithms coincides with the rates predicted by theory,
focusing on the strongly convex case for now.

We consider a distributed least squares objective with
fi(x) := 1

2 ‖Aix− bi‖22, for fixed Hessian A2
i = i2

n · Id
and sample each bi ∼ N (0, ζ̄

2
/i2Id) for a parameter ζ̄2,

which controls the similarity of the functions (and coin-
cides with the parameter in Assumption 3a). We control
the stochastic noise σ̄2 by adding Gaussian noise to every
stochastic gradient. We depict the effect of these parameters
in Figure 2.

Setup. We consider three common network topologies,
ring, 2-d torus and fully-connected graph and use the
Metropolis-Hasting mixing matrix W , i.e. wij = wji =

1
deg(i)+1 = 1

deg(j)+1 for {i, j} ∈ E. For all algorithms we
tune the stepsize to reach a desired target accuracy ε with
the fewest number of iterations.

Discussion of Results. In Figure 1 we depict the results.
We observe that in the high noise regime (bottom row) the
graph topology and the functions similarity ζ̄2 do not impact
the number of iterations needed to reach the target accuracy
(the σ̄2

T term is dominating in this regime. We also see linear
rates when σ̄2 = ζ̄2 = 0 as predicted. When increasing
ζ̄2 (in the case of σ̄2 = 0) we see that on the ring and
torus topology the linear rate changes to a sublinear rate:
even thought the curves look like straight lines, they stop
converging when reaching the target accuracy (the stepsize
must be further decreased to achieve higher accuracy). By
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comparing two top right plots, we see that for fixed topology
the number of iterations increases approximately by a factor
of
√

10 when increasing ζ̄2 by a factor of 10, as one would
expect from the term ζ̄2

p2T 2 in the convergence rate (see also
Figure 3 in the appendix). The difference in number of
iterations on the torus vs. ring scales approximately linear
in the ratio of their mixing parameters p, (that is, Θ(n) as
mentioned in Section 4.2).

9. Extensions
We presented a unifying framework for the analysis of
decentralized SGD methods and provide the best known
convergence guarantees. Our results show that when the
noise is high, decentralized SGD methods can achieve linear
speedup in the number of workers n and the convergence
rate does only weakly depend on the graph topology, the
number of local steps or the data heterogeneity. This shows
that such methods are perfectly suited to solve stochastic
optimization problems in a decentralized way. However, our
results also reveal that when the noise is small (for e.g. when
using large mini-batches), the effect of those parameters
become more pronounced and especially function diversity
can hamper the convergence of decentralized SGD methods.

Our framework can be further extended by considering gra-
dient compression techniques (Koloskova et al., 2019) or
overlapping communication steps (Assran et al., 2019; Wang
et al., 2020) to additionally speedup the distributed training.
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APPENDIX
A Unified Theory of Decentralized SGD

with Changing Topology and Local Updates

The appendix is organized as follows: In Section A, we rewrite Algorithm 1 equivalently in matrix notation as Algorithm 2
and give a sketch of the proof using this new notation. In Section B we state a few auxiliary technical lemmas, before giving
all details for the proof of the theorem in Sections C and D. We conclude the appendix in Section F by presenting additional
numerical results that confirm the tightness of our theoretical analysis in the strongly convex case.

A. Proof of Theorem 2
A.1. Decentralized SGD in Matrix Notation

We can rewrite Algorithm 1 using the following matrix notation, extending the definition used in the main text:

X(t) :=
[
x

(t)
1 , . . . ,x(t)

n

]
∈ Rd×n,

X̄(t) :=
[
x̄(t), . . . , x̄(t)

]
∈ Rd×n,

∂F (X(t), ξ(t)) :=
[
∇F1(x

(t)
1 , ξ

(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)
n )
]
∈ Rd×n.

(14)

Algorithm 2 DECENTRALIZED SGD (MATRIX NOTATION)

input : X(0), stepsizes {ηt}T−1
t=0 , number of iterations T , mixing matrix distributionsW(t) for t ∈ [0, T ]

1: for t in 0 . . . T do
2: Sample W (t) ∼ W(t)

3: X(t+ 1
2 ) = X(t) − ηt∂Fi(X(t), ξ

(t)
i ) . stochastic gradient updates

4: X(t+1) = X(t+ 1
2 )W (t) . gossip averaging

5: end for

A.2. Proof Sketch—Combining Consensus Progress (Gossip) and Optimization Progress (SGD)

In this section we sketch of the proof for Theorem 2. As a first step in the proof, we will derive an upper bound on
the expected progress, measured as distance to the optimum, rt = E

∥∥x̄(t) − x?
∥∥2

for the convex cases, and function
suboptimality rt = E f(x̄(t))− f? in the non-convex case. These bounds will have the following form:

rt+1 ≤ (1− aηt)rt − bηtet + cη2
t + ηtBΞt , (15)

with Ξt = 1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

and

• for both convex cases rt = E
∥∥x̄(t) − x?

∥∥2
, et = f(x̄(t))− f(x?), a = µ

2 , b = 1, c = σ̄2

n , B = 3L (Lemma 8);

• for the non-convex case rt = E f(x̄(t))− f?, et =
∥∥∇f(x̄(t))

∥∥2

2
, a = 0, b = 1

4 , c = Lσ̂2

n , B = L2 (Lemma 10).

We will then bound the consensus distance Ξt as detailed in Section C; Lemmas 9 and11 by a recursion of the form

Ξt ≤
(

1− p

2

)
Ξmτ +

p

16τ

t−1∑
j=mτ

Ξj +D

t−1∑
j=mτ

η2
j ej +A

t−1∑
j=mτ

η2
j , (16)
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with A = σ̄2 + 18τ
p ζ̄2 , D = 36L τp for convex cases (Lemma 9) and A = σ̂2 + 2

(
6τ
p +M

)
ζ̂2, D = 2P

(
6τ
p +M

)
for

non-convex case (Lemma 11).

Next, we simplify this recursive equation (16) using Lemma 12 and some positive weights {wt}t≥0 (see Lemma 12 for the
definition of the weights wt) to

B ·
T∑
t=0

wtΞt ≤
b

2
·
T∑
t=0

wtet + 64AB ·
T∑
t=0

wtη
2
t , (17)

where again Ξt = 1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

.

Then we combine (15) and (17). Firstly rearranging (15), multiplying by wt and dividing by ηt, we get

bwtet ≤
(1− aηt)

ηt
wtrt −

wt
ηt
rt+1 + cwtηt +BwtΞt ,

Now summing up and dividing by WT =
∑T
t=0 wt,

1

WT

T∑
t=0

bwtet ≤
1

WT

T∑
t=0

(
(1− aηt)wt

ηt
rt −

wt
ηt
rt+1

)
+

c

WT

T∑
t=0

wtηt +
1

WT
B

T∑
t=0

wtΞt

(17)
≤ 1

WT

T∑
t=0

(
(1− aηt)wt

ηt
rt −

wt
ηt
rt+1

)
+

c

WT

T∑
t=0

wtηt +
1

2WT

T∑
t=0

wtet +
64BA

WT

T∑
t=0

wtη
2
t ,

Therefore,

1

2WT

T∑
t=0

bwtet ≤
1

WT

T∑
t=0

(
(1− aηt)wt

ηt
rt −

wt
ηt
rt+1

)
+

c

WT

T∑
t=0

wtηt +
64BA

WT

T∑
t=0

wtη
2
t (18)

Finally, to solve this main recursion (18) and obtain the final convergence rates of Theorem 2, we will use the following
Lemmas, which will be presented in Section D:

• Lemma 13 for strongly convex case when a > 0.

• Lemmas 14 and 15 for both weakly convex and non-convex cases as their common feature is that a = 0.

A.3. How the Proof of Theorem 2 Follows

In this section we summarize how the proof of Theorem 2 follows from the results that we establish in Sections C and D
below. Note that for convex cases we require both fi and Fi to be convex as in Lemma 9.

Proof of Theorem 2, strongly convex case. The proof follows by applying the result of Lemma 13 to the equation (18)
(obtained with Lemmas 8, 9, 12) with rt = E

∥∥x̄(t) − x?
∥∥2

, et = f(x̄(t)) − f(x?), a = µ
2 , b = 1, c = σ̄2

n , d = 96
√

3τL
p ,

A = σ̄2 + 18τ
p ζ̄2, B = 3L. It is only left to show that chosen weights wt stepsizes ηt in Lemma 13 satisfy conditions of

Lemmas 8, 9, 12, which is shown in Proposition 4.

Proof of Theorem 2, weakly convex case. The proof follows by applying the result of Lemma 14 to the equation (18)
(obtained with Lemmas 8, 9, 12) with rt = E

∥∥x̄(t) − x?
∥∥2

, et = f(x̄(t)) − f(x?), a = 0, b = 1, c = σ̄2

n , d = 96
√

3τL
p ,

A = σ̄2 + 18τ
p ζ̄2, B = 3L. Weights wt stepsizes ηt chosen in Lemma 14 satisfy conditions of Lemmas 8, 9, 12, as shown

in Proposition 4.

Proof of Theorem 2, non-convex case. applying the result of Lemma 14 to the equation (18) (obtained with Lemmas 10,

11, 12) with rt = E f(x̄(t)) − f?, et =
∥∥∇f(x̄(t))

∥∥2

2
, a = 0, b = 1

4 , c = Lσ̂2

n , d = 64L

√
2P
(

6τ
p +M

)
τ
p , A =

σ̂2 + 2
(

6τ
p +M

)
ζ̂2, B = L2. Weights wt stepsizes ηt chosen in Lemma 14 satisfy conditions of Lemmas 10, 11, 12, as

shown in Proposition 4.
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A.4. Improved rate when τ = 1 (recovering mini-batch SGD convergence results)

In the special case when τ = 1 the proof can be simplified and the rate can be improved: there will be an additional (1− p)
factor appearing in the middle term, e.g in strongly convex case the improved rate reads as

Õ
(
σ̄2

nµT
+
L(ζ̄2 + pσ̄2)(1− p)

µ2p2T 2
+
LR2

0

p
exp

[
−µTp

L

])
.

The main difference to the general result stated in Theorem 2 (for τ ≥ 1) is that the second term is multiplied with (1− p),
allowing to recover the rate of mini-batch SGD in the case of fully-connected graph when p = 1. This improvement also
holds for the weakly-convex and non-convex case.

In order to do so, one has to observe that the consensus distance Lemmas 9 and 11 can be improved when τ = 1. In the first
lines of both these proofs we multiply with (1− p) not only the first term

∥∥X(t) − X̄(t)
∥∥2

2
but also the second term with

the gradient as during the 1-step averaging both x(t) and ηt∂Fi(X(t), ξ
(t)
i ) are averaged with mixing matrix W (t) (line 4

of Algorithm 2). We omit the full derivations for this special case, as they can easily be obtained by following the current
proofs.

B. Technical Preliminaries
B.1. Implications of the assumptions

Proposition 1. One step of gossip averaging with the mixing matrix W (def. 1) preserves the average of the iterates, i.e.

XW
11>

n
= X

11>

n
.

Proposition 2 (Implications of the smoothness Assumption 1a). If for functions Fi(x, ξ) Assumption 1a holds, then it also
holds that

Fi(x, ξ) ≤ Fi(y, ξ) + 〈∇Fi(y, ξ),x− y〉+
L

2
‖x− y‖22 , ∀x,y ∈ Rd, ξ ∈ Ωi (19)

If functions fi(x) = Eξ Fi(x, ξ), then

fi(x) ≤ fi(y) + 〈∇fi(y),x− y〉+
L

2
‖x− y‖22 , ∀x,y ∈ Rd (20)

Moreover, if in addition Fi are convex functions, then

‖∇fi(x)−∇fi(y)‖2 ≤ L ‖x− y‖2 , ∀x,y ∈ Rd, (21)

‖∇g(x)−∇g(y)‖22 ≤ 2L (g(x)− g(y)− 〈x− y,∇g(y)〉) , ∀x,y ∈ Rd, (22)

where g(x) is either Fi or fi.

Proposition 3 (Implications of the smoothness Assumption 1b). From Assumption 1b it follows that

fi(x) ≤ fi(y) + 〈∇fi(y),x− y〉+
L

2
‖x− y‖22 , ∀x,y ∈ Rd . (23)

B.2. Useful Inequalities

Lemma 4. For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n
n∑
i=1

‖ai‖2 . (24)

Lemma 5. For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (25)



A Unified Theory of Decentralized SGD

Lemma 6. For given two vectors a,b ∈ Rd

‖a + b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (26)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.
Remark 7. For A ∈ Rd×n, B ∈ Rn×n

‖AB‖F ≤ ‖A‖F ‖B‖2 . (27)

B.3. τ -slow Sequences

Definition 2 (τ -slow sequences (Stich & Karimireddy, 2019)). The sequence {at}t≥0 of positive values is τ -slow decreasing
for parameter τ > 0 if

at+1 ≤ at, ∀t ≥ 0 and, at+1

(
1 +

1

2τ

)
≥ at, ∀t ≥ 0 .

The sequence {at}t≥0 is τ -slow increasing if {a−1
t }t≥0 is τ -slow decreasing.

Proposition 4 (Examples).

1. The sequence {η2
t }t≥0 with ηt = a

b+t , b ≥
32
p is 4

p -slow decreasing.

2. The sequence of constant stepsizes {η2
t }t≥0 with ηt = η is τ -slow decreasing for any τ .

3. The sequence {wt}t≥0 with wt = (b+ t)2, b ≥ 84
p is 8

p -slow increasing.

4. The sequence of constant weights {wt}t≥0 with wt = 1 is τ -slow increasing for any τ .

C. Descent Lemmas and Consensus Recursions
In this section, according to our proof sketch we derive descent (15) and consensus recursions (17) for both convex and also
non-convex cases.

C.1. Convex Cases

We require both fi and Fi to be convex. We do not need Assumption 2 to hold for all x,y ∈ Rd and we could weaken it to
hold only for x = x? and for all y ∈ Rd.
Proposition 5 (Mini-batch variance). Let functions Fi(x, ξ) , i ∈ [n] be L-smooth (Assumption 1a) with bounded noise at
the optimum (Assumption 3a). Then for any xi ∈ Rd, i ∈ [n] and x̄ := 1

n

∑n
i=1 xi it holds

Eξ1,...,ξn

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ 3L2

n2

n∑
i=1

‖xi − x̄‖2 +
6L

n
(f(x̄)− f(x?)) +

3σ̄2

n
.

Proof.

Eξ1,...,ξn

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖
2

≤ 3

n2

n∑
i=1

Eξi
(
‖∇Fi(xi, ξi)−∇Fi(x̄, ξi)−∇fi(xi) +∇fi(x̄)‖2

+
∥∥∥∇Fi(x̄, ξi)−∇Fi(x?, ξi)−∇fi(x̄(t)) +∇fi(x?)

∥∥∥2

+ ‖∇Fi(x?, ξi)−∇fi(x?)‖2
)

≤ 3

n2

n∑
i=1

Eξi
(∥∥∥∇Fi(x(t)

i , ξ
(t)
i )−∇Fi(x̄, ξi)

∥∥∥2

+ ‖∇Fi(x̄, ξi)−∇Fi(x?, ξi)‖2 + ‖∇Fi(x?, ξi)−∇fi(x?)‖2
)

≤ 3

n2

n∑
i=1

(
L2
∥∥∥x(t)

i − x̄
∥∥∥2

+ 2L
(
fi(x̄

(t))− fi(x?)
)

+ σ2
i

)
,
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where we used that E ‖Y − a‖2 = E ‖Y ‖2 − ‖a‖2 ≤ E ‖Y ‖2 if a = EY .

Lemma 8 (Descent lemma for convex cases). Under Assumptions 1a, 2, 3a and 4, the averages x̄(t) := 1
n

∑n
i=1 x

(t)
i of the

iterates of Algorithm 1 with the stepsize ηt ≤ 1
12L satisfy

E
ξ
(t)
1 ,...,ξ

(t)
n
‖x̄(t+1) − x?‖

2
≤
(

1− ηtµ

2

)∥∥∥x̄(t) − x?
∥∥∥2

+
η2
t σ̄

2

n
− ηt

(
f(x̄(t))− f?

)
+ ηt

3L

n

n∑
i=1

∥∥∥x̄(t) − x
(t)
i

∥∥∥2

,

(28)

where σ̄2 = 1
n

∑n
i=1 σ

2
i .

Proof. Because all mixing matrixes preserve the average (Proposition 1), we have

∥∥∥x̄(t+1) − x?
∥∥∥2

=

∥∥∥∥∥x̄(t) − ηt
n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )− x?

∥∥∥∥∥
2

=

∥∥∥∥∥x̄(t) − x? − ηt
n

n∑
i=1

∇fi(x(t)
i ) +

ηt
n

n∑
i=1

∇fi(x(t)
i )− ηt

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

=

∥∥∥∥∥x̄(t) − x? − ηt
n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+ η2
t

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )− 1

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

+

+
2ηt
n

〈
x̄(t) − x? − ηt

n

n∑
i=1

∇fi(x(t)
i ),

n∑
i=1

∇fi(x(t)
i )−

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

〉
.

The last term is zero in expectation, as E
ξ
(t)
i
∇Fi(x(t)

i , ξ
(t)
i ) = ∇fi(x(t)

i ). The second term is estimated using Proposition 5.

The first term can be written as:∥∥∥∥∥x̄(t) − x? − ηt
n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

=
∥∥∥x̄(t) − x?

∥∥∥2

+ η2
t

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
=:T1

− 2ηt

〈
x̄(t) − x?,

1

n

n∑
i=1

∇fi(x(t)
i )

〉
︸ ︷︷ ︸

=:T2

.

We can estimate

T1 =

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(x(t)
i )−∇fi(x̄(t)) +∇fi(x̄(t))−∇fi(x?))

∥∥∥∥∥
2

(24)
≤ 2

n

n∑
i=1

∥∥∥∇fi(x(t)
i )−∇fi(x̄(t))

∥∥∥2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x̄(t))− 1

n

n∑
i=1

∇fi(x?)

∥∥∥∥∥
2

(21),(22)
≤ 2L2

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

+
4L

n

n∑
i=1

(
fi(x̄

(t))− fi(x?)
)

=
2L2

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

+ 4L
(
f(x̄(t))− f?

)
.

And for the remaining T2 term:
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− 1

ηt
T2 = − 2

n

n∑
i=1

[〈
x̄(t) − x

(t)
i ,∇fi(x(t)

i )
〉

+
〈
x

(t)
i − x?,∇fi(x(t)

i )
〉]

(20),(5)
≤ − 2

n

n∑
i=1

[
fi(x̄

(t))− fi(x(t)
i )− L

2

∥∥∥x̄(t) − x
(t)
i

∥∥∥2

+ fi(x
(t)
i )− fi(x?) +

µ

2

∥∥∥x(t)
i − x?

∥∥∥2
]

(24)
≤ −2

(
f(x̄(t))− f(x?)

)
+
L+ µ

n

n∑
i=1

∥∥∥x̄(t) − x
(t)
i

∥∥∥2

− µ

2

∥∥∥x̄(t) − x?
∥∥∥2

,

Where at the last step (24) was applied to
∥∥x̄(t) − x?

∥∥2 ≤ 2
∥∥∥x̄(t) − x

(t)
i

∥∥∥2

+ 2
∥∥∥x(t)

i − x?
∥∥∥2

. Putting everything together

and using that ηt ≤ 1
12L we are getting statement of the lemma.

Lemma 9 (Recursion for consensus distance). Under Assumptions 1a, 2, 3a and 4, if in addition functions Fi are convex
and if stepsizes ηt ≤ p

96
√

3τL
, then

Ξt ≤
(

1− p

2

)
Ξmτ +

p

16τ

t−1∑
j=mτ

Ξj + 36L
τ

p

t−1∑
j=mτ

η2
j

(
f(x̄(j))− f(x?)

)
+

(
σ̄2 +

18τ

p
ζ̄2

) t−1∑
j=mτ

η2
j ,

where Ξt = 1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

is a consensus distance, m = bt/τc − 1.

Proof. Using matrix notation (14), for t ≥ τ

nΞt = E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
= E

∥∥∥X(t) − X̄(mτ+ 1
2 ) −

(
X̄(t) − X̄(mτ+ 1

2 )
)∥∥∥2

F
≤ E

∥∥∥X(t) − X̄(mτ+ 1
2 )
∥∥∥2

F
,

where we used that
∥∥A− Ā∥∥2

F
=
∑n
i=1 ‖ai − ā‖22 ≤

∑n
i=1 ‖ai‖

2
2 = ‖A‖2F . Unrolling X(t) up to X(mτ) using lines 3–4

of the Algorithm 2,

nΞt ≤ E

∥∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ+ 1
2 ) +

t−1∑
j=mτ

ηj∂F (X(j), ξ(j))

j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ+ 1
2 ) +

t−1∑
j=mτ

ηj

(
∂F (X(j), ξ(j))− ∂F (X?, ξ(j)) + ∂f(X?)

) j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

+ E

∥∥∥∥∥∥
t−1∑
j=mτ

ηj

(
∂F (X?, ξ(j))− ∂f(X?)

) j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F
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where we used that E ∂F (X?, ξ(j)) = ∂f(X?). Using that all of the ξ(j) are independent for different j,

nΞt
(26)
≤ (1 + α)E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ+ 1
2 )

∥∥∥∥∥
2

F

+ (1 + α−1)E

∥∥∥∥∥∥
t−1∑
j=mτ

ηj

(
∂F (X(j), ξ(j))− ∂F (X?, ξ(j)) + ∂f(X?)

) j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

+

t−1∑
j=mτ

η2
j E

∥∥∥∥∥(∂F (X?, ξ(j))− ∂f(X?)
) j∏
i=t−1

W (i)

∥∥∥∥∥
2

F

(13),(24),(27)
≤ (1 + α)(1− p)E

∥∥∥X(mτ) − X̄(mτ)
∥∥∥2

F
+ (1 + α−1)2τ

t−1∑
j=mτ

η2
j E
∥∥∥∂F (X(j), ξ(j))− ∂F (X?, ξ(j)) + ∂f(X?)

∥∥∥2

F

+

t−1∑
j=mτ

η2
j E
∥∥∥∂F (X?, ξ(j))− ∂f(X?)

∥∥∥2

F

α= p
2 ,(7)
≤ (1− p

2
)E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2

F
+

6τ

p

t−1∑
j=mτ

η2
j E
∥∥∥∂F (X(j), ξ(j))− ∂F (X?, ξ(j)) + ∂f(X?)

∥∥∥2

F︸ ︷︷ ︸
=:T

+

t−1∑
j=mτ

η2
jnσ̄

2,

We estimate the second term as

T = E
∥∥∥∂F (X(j), ξ(j))− ∂F (X̄(j), ξ(j)) + ∂F (X̄(j), ξ(j))− ∂F (X?, ξ(j)) + ∂f(X?)

∥∥∥2

F

(24)
≤ 3

∥∥∥∂F (X(j), ξ(j))− ∂F (X̄(j), ξ(j))
∥∥∥2

F
+ 3

∥∥∥∂F (X̄, ξ(j))− ∂F (X?, ξ(j))
∥∥∥2

F
+ 3 ‖∂f(X?)‖2F

(3),(22),(6)
≤ 3

(
L2
∥∥∥X(j) − X̄(j)

∥∥∥2

F
+ 2Ln(f(x̄(j))− f(x?)) + nζ̄2

)

Putting back estimate for T and using that ηt ≤ p

12
√

2τL
we arrive to the statement of the lemma.

C.2. Non-convex Case

Here we derive descent recursive equation (15) and recursion for consensus distance (16) for the non-convex case.

Proposition 6 (Mini-batch variance). Let functions Fi(x, ξ) , i ∈ [n] be L-smooth (Assumption 1a) with bounded noise as
in Assumption 3b. Then for any xi ∈ Rd, i ∈ [n] and x̄ := 1

n

∑n
i=1 xi it holds

Eξ1,...,ξn

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ σ̂2

n
+
M

n2

n∑
i=1

‖∇f(xi)‖2 (29)

Lemma 10 (Descent lemma for non-convex case). Under Assumptions 1b, 3b and 4, the averages x̄(t) := 1
n

∑n
i=1 x

(t)
i of

the iterates of Algorithm 1 with the constant stepsize η < 1
4L(M+1) satisfy

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− η

4

∥∥∥∇f(x̄(t))
∥∥∥2

2
+
ηL2

n

n∑
i=1

∥∥∥x̄(t) − x
(t)
i

∥∥∥2

2
+
L

n
η2σ̂2. (30)
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Proof. Because all mixing matrixes preserve the average (Proposition 1) and function f is L-smooth, we have

Et+1 f(x̄(t+1)) = Et+1 f

(
x̄(t) − η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

)

≤ f(x̄(t))− Et+1

〈
∇f(x̄(t)),

η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

〉
︸ ︷︷ ︸

:=T1

+Et+1
L

2
η2

∥∥∥∥∥∥ 1

n

n∑
j=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
:=T2

To estimate the second term, we add and subtract∇f(x̄(t))

T1 = −η
∥∥∥∇f(x̄(t))

∥∥∥2

+
η

n

n∑
i=1

〈
∇f(x̄(t)),∇fi(x̄(t))−∇fi(x(t)

i )
〉

(25),γ=1;(24)
≤ −η

2

∥∥∥∇f(x̄(t))
∥∥∥2

+
η

2n

n∑
i=1

∥∥∥∇fi(x̄(t))−∇fi(x(t)
i )
∥∥∥2

For the last term,

T2 = Et+1

∥∥∥∥∥∥ 1

n

n∑
j=1

(
∇Fi(x(t)

i , ξ
(t)
i )−∇fi(x(t)

i )
)∥∥∥∥∥∥

2

2

+

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
(29)
≤ σ̂2

n
+
M

n2

n∑
i=1

∥∥∥∇f(x
(t)
i )±∇f(x̄(t))

∥∥∥2

+

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )±∇f(x̄(t))

∥∥∥∥∥
2

2

(26)
≤ σ̂2

n
+

2M

n2

n∑
i=1

∥∥∥∇f(x
(t)
i )−∇f(x̄(t))

∥∥∥2

+ (2M/n + 2)
∥∥∥∇f(x̄(t))

∥∥∥2

2
+

2

n

n∑
i=1

∥∥∥∇fi(x(t)
i )−∇fi(x̄(t))

∥∥∥2

2

Combining this together and using L-smoothness to estimate
∥∥∥∇fi(x̄(t))−∇fi(x(t)

i )
∥∥∥2

2
and

∥∥∥∇f(x̄(t))−∇f(x
(t)
i )
∥∥∥2

2
,

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− η
(

1

2
− Lη(M + 1)

)∥∥∥∇f(x̄(t))
∥∥∥2

2
+

(
ηL2

2n
+
L3η2(M + 1)

n

) n∑
i=1

∥∥∥x̄(t) − x
(t)
i

∥∥∥2

2
+
L

n
η2σ̂2.

Applying η < 1
4L(M+1) we get statement of the lemma.

Lemma 11 (Recursion for consensus distance). Under Assumptions 1b, 3b and 4, if the stepsize ηt ≤ p

96
√

3τL
, then

Ξt ≤
(

1− p

2

)
Ξmτ +

p

16τ

t−1∑
j=mτ

Ξj + 2P

(
6τ

p
+M

) t−1∑
j=mτ

η2
j

∥∥∥∇f(x̄(j))
∥∥∥2

2
+

(
σ̂2 + 2

(
6τ

p
+M

)
ζ̂2

) t−1∑
j=mτ

η2
j

where Ξt = 1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

is a consensus distance, m = bt/τc − 1.

Proof. We start exactly the same way as in the convex proof in Lemma 9 Defining Ξt = 1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

,
m = bt/τc − 1 and using matrix notation (11), for t ≥ τ (and therefore m ≥ 0)

nΞt = E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
= E

∥∥∥X(t) − X̄(mτ+ 1
2 ) −

(
X̄(t) − X̄(mτ+ 1

2 )
)∥∥∥2

F
≤ E

∥∥∥X(t) − X̄(mτ+ 1
2 )
∥∥∥2

F
,
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where we used that
∥∥A− Ā∥∥2

F
=
∑n
i=1 ‖ai − ā‖ ≤

∑n
i=1 ‖ai‖

2
F = ‖A‖2F . Unrolling X(t) up to X(mτ) using lines 3-4 of

the Algorithm 2,

nΞt ≤ E

∥∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ) +

t−1∑
j=mτ

ηj∂F (X(j), ξ(j))

j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ) +

t−1∑
j=mτ

ηj∂f(X(j))

j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

+ E

∥∥∥∥∥∥
t−1∑
j=mτ

ηj

(
∂F (X(j), ξ(j))− ∂f(X(j))

) j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

where we used that E ∂F (X(j), ξ(j)) = ∂f(X(j)) and that all of the ξ(j) are independent for different j.

nΞt
(26)
≤ (1 + α)E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ)

∥∥∥∥∥
2

F

+ (1 + α−1)E

∥∥∥∥∥∥
t−1∑
j=mτ

ηj∂f(X(j))

j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

+

t−1∑
j=mτ

η2
j E

∥∥∥∥∥(∂F (X(j), ξ(j))− ∂f(X(j))
) j∏
i=t−1

W (i)

∥∥∥∥∥
2

F

(13),(24),(27)
≤ (1 + α)(1− p)E

∥∥∥X(mτ) − X̄(mτ)
∥∥∥2

F
+ (1 + α−1)2τ

t−1∑
j=mτ

η2
j E
∥∥∥∂f(X(j))

∥∥∥2

F

+

t−1∑
j=mτ

η2
j E
∥∥∥∂F (X(j), ξ(j))− ∂f(X(j))

∥∥∥2

F

α= p
2 ,(9)
≤

(
1− p

2

)
E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2

F
+

(
6τ

p
+M

) t−1∑
j=mτ

η2
j

∥∥∥∂f(X(j))
∥∥∥2

F
+

t−1∑
j=mτ

η2
jnσ̂

2

(26)
≤
(

1− p

2

)
E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2

F
+

(
6τ

p
+M

)
2

t−1∑
j=mτ

η2
j

(∥∥∥∂f(X(j))− ∂f(X̄(j))
∥∥∥2

F
+
∥∥∥∂f(X̄(j))

∥∥∥2

F

)

+

t−1∑
j=mτ

η2
jnσ̂

2

(4),(8)
≤

(
1− p

2

)
E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2

F
+

(
6τ

p
+M

)
2

t−1∑
j=mτ

η2
j

(
L2
∥∥∥X(j) − X̄(j)

∥∥∥2

F
+ nζ̂2 + Pn

∥∥∥∇f(x̄(j))
∥∥∥2

2

)

+

t−1∑
j=mτ

η2
jnσ̂

2

Where ∂f̄(X̄(j)) = ∂f(X̄(j))11>

n . Using that ηt ≤ p

4L
√

2τ(6τ+pM)

nΞt ≤
(

1− p

2

)
nΞmτ +

t−1∑
j=mτ

p

16τ
nΞj + 2Pn

(
6τ

p
+M

) t−1∑
j=mτ

η2
j

∥∥∥∇f(x̄(j))
∥∥∥2

2
+

t−1∑
j=mτ

η2
jn

[
σ̂2 + 2

(
6τ

p
+M

)
ζ̂2

]



A Unified Theory of Decentralized SGD

C.3. Simplifying Consensus Recursion

In Lemmas 9, 11 we obtained the consensus recursive equation (16) for both convex and non-convex cases. In this section
we simplify it to be able to easily combine it later with (15).
Lemma 12. If non-negative sequences {Ξt}t≥0, {et}t≥0 and {ηt}t≥0 satisfy (16) for some constants 0 < p ≤ 1, τ ≥
1, A,D ≥ 0, moreover if the stepsizes {η2

t }t≥0 is 8τ
p -slow decreasing sequence (Definition 2), and if {wt}t≥0 is 16τ

p -slow
increasing non-negative sequence of weights, then it holds that

E

T∑
t=0

wtΞt ≤
b

2

T∑
t=0

wtet + 64BA
τ

p

T∑
t=0

wtη
2
t ,

for some constant E > 0 with the constraint that stepsizes ηt ≤ 1
16

√
pb
DBτ .

Proof. Recursively substituting every Ξj in the second term of (16) we get

Ξt ≤
(

1− p

2

)
Ξmτ

(
1 +

p

16τ

)2τ

+D

t−1∑
j=mτ

(
1 +

p

16τ

)t−1−j
η2
j ej +A

t−1∑
j=mτ

(
1 +

p

16τ

)t−1−j
η2
j ,

Using that
(
1 + p

16τ

)2τ ≤ exp
(
p
8

)
≤ 1 + p

4 for p ≤ 1 and also that (1 + p
16τ )t−1−j ≤

(
1 + p

16τ

)2τ ≤ 1 + p
4 ≤ 2

Ξt ≤
(

1− p

4

)
Ξmτ + 2D

t−1∑
j=mτ

η2
j ej + 2A

t−1∑
j=mτ

η2
j ,

Unrolling Ξmτ recursively up to 0 we get,

Ξt ≤ 2D

t−1∑
j=0

(
1− p

4

)b(t−j)/τc
η2
j ej + 2A

t−1∑
j=0

(
1− p

4

)b(t−j)/τc
η2
j ,

For the first term estimating
(
1− p

4

)1/τ ≤ exp(− p
4τ ) ≤ 1− p

8τ and that
(
1− p

8τ

)τb(t−j)/τc ≤ (1− p
8τ

)t−j (
1− p

8τ

)−τ
.

For the last term,
(
1− p

8τ

)−τ ≤ ( 1
1− p

8τ

)τ
≤ (1 + p

4τ )τ because p
8τ ≤

1
2 and finally

(
1 + p

4τ

)τ ≤ exp(p4 ) < 2,

Ξt ≤ 4D

t−1∑
j=0

(
1− p

8τ

)t−j
η2
j ej + 4A

t−1∑
j=0

(
1− p

8τ

)t−j
η2
j ,

Now using that η2
t is 8τ

p -slow decreasing, i.e. η2
j ≤ η2

t

(
1 + p

16τ

)t−j
and using that (1− p

8τ )(1 + p
16τ ) ≤ (1− p

16τ )

Ξt ≤ 4Dη2
t

t−1∑
j=0

(
1− p

16τ

)t−j
ej + 4Aη2

t

t−1∑
j=0

(
1− p

16τ

)t−j
≤ 4Dη2

t

t−1∑
j=0

(
1− p

16τ

)t−j
ej + 64A

τ

p
η2
t

Now averaging Ξt with weights wt and using that wt is 16τ
p -slow increasing sequence, i.e. wt ≤ wj

(
1 + p

32τ

)t−j
, and also

using that ηt ≤ 1
16

√
pb
DBτ

B

T∑
t=0

wtΞt ≤ 4DB

T∑
t=0

η2
t

t−1∑
j=0

wj

(
1− p

32τ

)t−j
ej + 64AB

τ

p

T∑
t=0

wtη
2
t

≤ pb

64τ

T∑
t=0

t−1∑
j=0

wj

(
1− p

32τ

)t−j
ej︸ ︷︷ ︸

:=T1

+64AB
τ

p

T∑
t=0

wtη
2
t

And finally,

T1 =
pb

64τ

T∑
j=0

wjej

T∑
t=j+1

(
1− p

32τ

)t−j
≤ pb

64τ

T∑
j=0

wjej

∞∑
t=0

(
1− p

32τ

)t−j
≤ b

2

T∑
t=0

wtet.
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D. Solving the Main Recursion (18)

D.1. a > 0 (strongly convex case)

Lemma 13. If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (18) for some constants a, b > 0, c, A,B ≥ 0, then there
exists a constant stepsize ηt = η < 1

d such that for weights wt = (1− aη)−(t+1) and WT :=
∑T
t=0 wt it holds:

1

2WT

T∑
t=0

betwt + arT+1 ≤ Õ
(
r0d exp

[
−a(T + 1)

d

]
+

c

aT
+

BA

a2T 2

)
,

where Õ hides polylogarithmic factors.

Proof. Starting from (18) and using that ηt = η and that wt(1−aη)
η = wt−1

η we obtain a telescoping sum,

1

2WT

T∑
t=0

bwtet ≤
1

WT η
((1− aη)w0r0 − wT rT+1) + cη + 64BAη2 ,

And hence,

1

2WT

T∑
t=0

bwtet +
wT rT+1

WT η
≤ r0

WT η
+ cη + 64BAη2 ,

Using that WT ≤ wT
aη and WT ≥ wT = (1− aγ)−(T+1) we can simplify

1

2WT

T∑
t=0

bwtet + arT+1 ≤ (1− aη)T+1 r0

η
+ cη + 64BAη2 ≤ r0

η
exp [−aη(T + 1)] + cη + 64BAη2 ,

Now lemma follows by tuning η the same way as in (Stich, 2019a).

• If 1
d ≥

ln(max{2,a2r0T 2/c})
aT then we choose η = ln(max{2,a2r0T 2/c})

aT and get that

Õ
(
ar0T exp

[
− ln(max{2, a2r0T

2/c})
])

+ Õ
( c

aT

)
+ Õ

(
BA

a2T 2

)
= Õ

( c

aT

)
+ Õ

(
BA

a2T 2

)
,

• Otherwise 1
d ≤

ln(max{2,a2r0T 2/c})
aT we pick η = 1

d and get that

Õ
(
r0d exp

[
−a(T + 1)

d

]
+
c

d
+
BA

d2

)
≤ Õ

(
r0d exp

[
−a(T + 1)

d

]
+

c

aT
+

BA

a2T 2

)
.

D.2. a = 0 (weakly convex and non-convex cases)

Now we assume that in Assumption 2 µ = 0, which means that a = 0 in (18).

Lemma 14. If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (18) with a = 0, b > 0, c, A,B ≥ 0, then there exists a
constant stepsize ηt = η < 1

d such that for weights {wt = 1}t≥0 it holds that:

1

(T + 1)

T∑
t=0

et ≤ O

(
2

(
cr0

T + 1

) 1
2

+ 2(BA)1/3

(
r0

T + 1

) 2
3

+
dr0

T + 1

)
.

Proof. With a = 0, constant stepsizes ηt = η and weights {wt = 1}t≥0 (18) is equivalent to

1

2(T + 1)

T∑
t=0

et ≤
1

(T + 1)η

T∑
t=0

(rt − rt+1) + cη + 64BAη2 ≤ r0

(T + 1)η
+ cη + 64BAη2.

To conclude the proof we tune the stepsize using Lemma 15.
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Lemma 15 (Tuning the stepsize). For any parameters r0 ≥ 0, b ≥ 0, e ≥ 0, d ≥ 0 there exists constant stepsize η ≤ 1
d

such that

ΨT :=
r0

η(T + 1)
+ bη + eη2 ≤ 2

(
br0

T + 1

) 1
2

+ 2e1/3

(
r0

T + 1

) 2
3

+
dr0

T + 1

Proof. Choosing η = min

{(
r0

b(T+1)

) 1
2

,
(

r0
e(T+1)

) 1
3

, 1
d

}
≤ 1

d we have three cases

• η = 1
d and is smaller than both

(
r0

b(T+1)

) 1
2

and
(

r0
e(T+1)

) 1
3

, then

ΨT ≤
dr0

T + 1
+
b

d
+

e

d2
≤
(

br0

T + 1

) 1
2

+
dr0

T + 1
+ e1/3

(
r0

T + 1

) 2
3

• η =
(

r0
b(T+1)

) 1
2

<
(

r0
e(T+1)

) 1
3

, then

ΨT ≤ 2

(
r0b

T + 1

) 1
2

+ e

(
r0

b(T + 1)

)
≤ 2

(
r0b

T + 1

) 1
2

+ e
1
3

(
r0

(T + 1)

) 2
3

,

• The last case, η =
(

r0
e(T+1)

) 1
3

<
(

r0
b(T+1)

) 1
2

ΨT ≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+ b

(
r0

e(T + 1)

) 1
3

≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+

(
br0

T + 1

) 1
2

.

E. Lower Bound
Proof of Theorem 3. We consider minimization problem of the form (1) with fi(x) = 1

2 (x− yi)2, x, yi ∈ R which has the
solution x? = 1

n

∑n
i=1 yi, L = µ = 1. We denote x = (x1, . . . , xn)> and∇f(x) = (∇f1(x1), . . . ,∇fn(xn))

>.

We assume that the starting point x(0) is an eigenvector of W , corresponding to the second largest eigenvalue, i.e.
Wx(0) = (1− p)x(0) and we set yi such that y = 1 + x(0). With this choice of y, ζ̄2 =

∥∥x(0)
∥∥2

2
. It will be also useful to

note that the average x̄(0) = 0 since it is orthogonal to 1, the eigenvector of W corresponding to the largest eigenvalue. We
use the notation z̄ := 1

n11
>z.

We start the proof by decomposing the error
∥∥x(t) − ȳ

∥∥2

2
on consensus and optimization terms

∥∥∥x(t) − ȳ
∥∥∥2

2
=
∥∥∥x(t) − x̄(t) + x̄(t) − ȳ

∥∥∥2

2
=
∥∥∥x(t) − x̄(t)

∥∥∥2

2
+
∥∥∥x̄(t) − ȳ

∥∥∥2

2
.

Using that for our chosen functions∇f(x) = x− y, we can estimate the optimization term as

∥∥∥x̄(t) − ȳ
∥∥∥2

2
=
∥∥∥(1− η)x̄(t−1) + ηȳ − ȳ

∥∥∥2

2
= (1− η)2

∥∥∥x̄(t−1) − ȳ
∥∥∥2

2
= (1− η)2t

∥∥∥x̄(0) − ȳ
∥∥∥2

2
= (1− η)2t

(
ζ̄2 + n

)
.
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For the consensus term,∥∥∥x(t) − x̄(t)
∥∥∥2

2
=

∥∥∥∥(W − 11>

n

)(
x(t+ 1

2 ) − x̄(t+ 1
2 )
)∥∥∥∥2

2

=

∥∥∥∥(W − 11>

n

)(
(1− η)

(
x(t) − x̄(t)

)
+ η(y − ȳ)

)∥∥∥∥2

2

=

=

∥∥∥∥∥
(
W − 11>

n

)t
(1− η)tx(0) + η

t−1∑
τ=0

(1− η)τ
(
W − 11>

n

)τ
(y − ȳ)

∥∥∥∥∥
2

2

=

=

∥∥∥∥∥(1− p)t(1− η)tx(0) + η

t−1∑
τ=0

(1− η)τ (1− p)τx(0)

∥∥∥∥∥
2

2

=

(
(1− p)t(1− η)t + η

t−1∑
τ=0

(1− η)τ (1− p)τ
)2 ∥∥∥x(0)

∥∥∥2

2

≥

(1− p)2t(1− η)2t + η2

(
t−1∑
τ=0

(1− η)τ (1− p)τ
)2
 ζ̄2

In order to guarantee error less than ε, it is necessary to have simultaneously both optimization and consensus terms less
than ε, therefore it is required that

(1− η)2t ≤ ε

n
(31)

(1− η)2t(1− p)2t ≤ ε

ζ̄2
(32)

η

(
t−1∑
τ=0

(1− η)τ (1− p)τ
)

= η
1− (1− η)t(1− p)t

1− (1− η)(1− p)
≤
√

ε

ζ̄2
(33)

Equations (32), (33) imply

η ≤
√

ε

ζ̄2

1− (1− η)(1− p)
1−

√
ε/ζ̄2

≤
√

ε

ζ̄2

p+ η

1−
√
ε/ζ̄2

And therefore for ε ≤ ζ̄2

16 ,

η ≤
√
ε/ζ̄2p

1− 2
√
ε/ζ̄2
≤ 2
√
ε/ζ̄2p

With this upper bound on η, the inequality (31) gives a lower bound on t:

t ≥
log n

ε

−2 log(1− η)
≥

log 1
ε

2η
≥
ζ̄ log 1

ε

4
√
εp
, (34)

here we used that n ≥ 1 and that log(1− η) ≥ −η for η ≤ 4
5 .

F. Additional Experiments to Verify the O
(

1
T 2

)
Term

In Theorem 2 we proved an upper bound and in Theorem 3 we proved a lower bound, that indicates that in the noiseless
(σ̄2 = 0) strongly convex case the convergence is not linear when ζ̄2 > 0. In this section we verify numerically that this rate
indeed reflects tightly the convergence behavior of decentralized SGD.

We consider the same setting as in Section 8 before, with σ̄2 = 0, ζ̄2 = 10, n = 25, and d = 10.

For both ring and 2-d torus (grid), we vary the target accuracy (ε) and tune the stepsize to find the smallest number of
iterations required (Tε) to achieve this target accuracy. In Figure 3 we depict the results, where x-axis is 1√

ε
and y-axis is

Tε. Based on the Theorem 2 for strongly convex case, ideally each of them should be a line, as we observe in the plots.
Moreover, the ratio of the slopes of these lines is 30.2/2.3 = 13.13 which matches the ratio of the spectral gap of these
graphs (pgrid/pring = 0.276/0.021 = 13.142), as it is shown in Theorems 2 and 3.
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Figure 3. Verifying the O
(

ζ̄2

p2T2

)
convergence for the strongly convex noiseless (σ̂2 = 0) case. Number of iterations to converge to target

accuracy ε on ring (left) and 2-d torus (right).
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