Oracles API¶
First Order Oracles for superquantile optimization¶
- 
class spqr.OracleSubgradient(loss, loss_grad, p)[source]¶
- Base class that instantiate the superquantile oracle for a non differentiable loss - For an input oracle \(L\) given through two functions - lossand- loss_grad, this class is an interface to compute the value and a subgradient of the function \(w \mapsto Cvar \circ L(w)\) over a specified dataset- Parameters
- loss – function associated to the oracle 
- loss_grad – gradient associated to the oracle 
- p – probability level (by default 0.8) 
 
 
- 
class spqr.OracleSmoothGradient(loss, loss_grad, p, smoothing_parameter=1000.0)[source]¶
- Base class that instantiate the superquantile oracle for a differentiable loss - For an input oracle \(L\) given through two functions - lossand- grad_loss, this class is an interface to compute the value and the gradient of the function \(w \mapsto Cvar \circ L(w)\) over a specified dataset.- Parameters
- loss – function associated to the oracle 
- loss_grad – gradient associated to the oracle 
- p – probability level (by default 0.8) 
- smoothing_parameter – specified smoothing parameter according to Nesterov’s smoothing. 
 
 
First Order Oracles for hyperquantile optimization¶
- 
class spqr.IntergratedOracleSubgradient(loss, loss_grad, p)[source]¶
- Base class that instantiate the hyperquantile oracle for a non differentiable loss - For an input oracle \(L\) given through two functions - lossand- loss_grad, this class is an interface to compute the value and a subgradient of the function \(w \mapsto ar{Cvar} \circ L(w)\) over a specified dataset- param loss
- function associated to the oracle 
- param loss_grad
- gradient associated to the oracle 
- param p
- probability level (by default 0.8) 
 
- 
class spqr.IntegratedOracleSmoothGradient(loss, loss_grad, p, smoothing_parameter=1000.0)[source]¶
- Base class that instantiate the hyperquantile oracle for a differentiable loss - For an input oracle \(L\) given through two functions - lossand- loss_grad, this class is an interface to compute the value and the gradient of the function \(w \mapsto ar{Cvar} \circ L(w)\) over a specified dataset- param loss
- function associated to the oracle 
- param loss_grad
- gradient associated to the oracle 
- param p
- probability level (by default 0.8) 
- param smoothing_parameter
- specified smoothing parameter according to Nesterov’s smoothing. 
 - 
cost_function(w, x, y)[source]¶
- Computes the value of \(w \mapsto ar{Cvar} \circ L(w)\) for the dataset \((x,y)\)